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ECOLOGISCH HERSTEL NEDERLANDSE WATEREN 

LEIDT TOT GROTERE INSECTENDIVERSITEIT 

EN LAGERE AANTALLEN

Monitoring door de Nederlandse waterschappen 

biedt nieuwe inzichten. Ondanks dat het totale 

aantal individuen van aquatische insecten de af-

gelopen drie decennia halveerde, is de diversiteit 

juist toegenomen. De grote afname kan vooral 

toegeschreven worden aan bepaalde dansmug-

gen, die voorheen profiteerden van voedselrijke 

omstandigheden door vermesting en vervuiling.

Verontrusting over de afname van het aantal 

landinsecten roept de vraag op hoe het gaat met 

in het water levende insecten. Langer-lopende 

monitoring zoals de macrofauna-bemonstering 
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van de Nederlandse waterschappen biedt de mogelijkheid om te achterhalen 

van welke groepen insecten het aantal individuen afneemt of juist toeneemt, en 

welke milieufactoren en beheermaatregelen daarbij het meest van invloed zijn. 

De onderzoeksresultaten zijn bemoedigend en ondersteunen het beheer van de 

waterschappen dat erop gericht is de waterkwaliteit en biodiversiteit verder te 

verhogen.

MONSTERS VERZAMELD DOOR WATERSCHAPPEN TUSSEN 1990 EN 2017

Om insectentrends in de Nederlandse oppervlaktewateren te bepalen, analyseer-

den we de langlopende, maar complexe, dataset van monsters verzameld door de 

waterschappen. De acht bestudeerde waterschappen lagen in het zuiden (Limburg 

en Oost-Brabant), oosten (Achterhoek en Twente), en westen (zuidwestelijke helft 

van Zuid-Holland). In onze analyses hebben we rekening gehouden met mogelij-

ke verschillen tussen de waterschappen en de veldmedewerkers die de monsters 

verzameld hebben, als ook het totale aantal meters dat bemonsterd is. Weer- en 

waterkwaliteitsgegevens werden ruimtelijk geïnterpoleerd naar de 1.709 locaties 

waar in de bestudeerde periode 12.087 macrofauna-monsters verzameld zijn.

DANSMUGGEN EN HAFTEN NAMEN AF, KOKERJUFFERS EN LIBELLEN TOE

Het aantal aquatische insecten is in 27 jaar tijd met 53% afgenomen. Niet alle 

insectengroepen droegen daar evenveel aan bij. Vooral de sterke afnames in de 

meest talrijke groepen waren bepalend: vooral dansmuggen, maar ook haften. 

Waterwantsen en -kevers namen ook af, maar waren sowieso al minder talrijk 

en hadden dus minder invloed op het totale aantal insecten. Dat laatste geldt 

ook voor kokerjuffers en libellen, die juist in aantal toenamen. Trendanalyses op 

het niveau van taxonomische geslachten laten een geheel andere patroon zien: 

van 66% van 213 insecten-geslachten nam het aantal juist toe. De meest talrijke 

geslachten kwamen minder voor, terwijl van de zeldzamere geslachten juist 

steeds meer individuen aangetroffen werden. Dit zorgde voor een steeds gelijkere 

verdeling van de aantallen individuen over de insecten-geslachten. Aangezien ook 

het aantal geslachten per monster toenam, leidt dat tot een grotere diversiteit, 

hetgeen gunstig is.

OVERHEERSENDE EFFECTEN VAN VERMINDERDE 

EUTROFIËRING EN VERMINDERDE TOXICITEIT PESTICIDEN

Bij het vergelijken met data van meerdere omgevingsvariabelen, zagen de on-

derzoekers dat de aantalstrends het best verklaard worden door de verbeterde 

waterkwaliteit. Halvering van de stikstof- en fosforconcentraties was positief 

gecorreleerd met het aantal individuen van de meeste groepen insecten, maar 

verlaagde juist het totale aantal dansmuggen en kriebelmuggen. De flinke afna-

me in de toxische druk van pesticiden in het water (uitgedrukt in meer-stoffen 

PAF) over de drie decennia had een vergelijkbaar positief effect op de diversiteit 

aan waterinsecten.

HERSTEL VAN WATERINSECTEN-GEMEENSCHAPPEN

Dit onderzoek geeft duidelijke aanwijzingen dat de gemeenschappen van 

waterinsecten zich aan het herstellen zijn van de slechte waterkwaliteit in de 

jaren tachtig (o.a. door vervuiling, vermesting en organische belasting door 

overstorten en directe lozingen van huishoudens). Insecten die karakteristiek 

zijn voor gezonde rivier- en meerecosystemen namen toe, terwijl negatieve 

indicatorgroepen juist afnamen. Zo deden insecten die van helder en stro-

mend water houden het beduidend beter dan insecten die stilstaand water en 

slibbodems prefereren.

Tegelijkertijd zijn op veel locaties de concentraties van nutriënten en toxische 

stoffen nog steeds boven de vastgestelde normen, terwijl de diversiteit aan 

insecten gedurende de hele studieperiode toenam. Onze resultaten bieden dus 

het perspectief dat verdergaande verbetering van de waterkwaliteit effectief 

kan zijn voor het herstel van waterinsecten-gemeenschappen. Helaas kon het 

effect van oever- en waterbeheer niet meegenomen worden in de analyses, 

maar de verwachting is dat natuurvriendelijk beheer een zeer positieve bijdra-

ge kan leveren. Het is echter niet duidelijk hoever de waterinsecten-gemeen-

schappen nog afstaan van historische situaties, omdat referentie-datasets die 

goed inzicht geven in de aantallen ontbreken.
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NEDERLANDSTALIGE BIJSCHRIFTEN VAN FIGUREN EN TABELLEN

De volgorde van onderstaande bijschriften is dezelfde als die van de figuren en 

tabellen in dit rapport. 

•	 Figuur 1: Schema van de uitgevoerde analyses in deze studie.

•	 Figuur 2: A. Kaart van de waterschappen waarvan data meegenomen zijn 

in deze studie. B. Aantal macrofauna-monsters in de gebruikte dataset per 

jaar. C. Aantal macrofauna-monsters per locatie. De acht waterschappen 

zijn HHD (Hoogheemraadschap van Delfland), WHD (Waterschap Hollandse 

Delta), WAM (Waterschap Aa en Maas), WD (Waterschap De Dommel), WPM 

(Waterschap Peel en Maasvallei, tegenwoordig onderdeel van Waterschap 

Limburg), WRD (Waterschap Regge en Dinkel, tegenwoordig onderdeel 

van Waterschap Vechtstromen), WRIJ (Waterschap Rijn en IJssel) en WRO 

(Waterschap Roer en Overmaas, tegenwoordig onderdeel van Waterschap 

Limburg).

•	 Tabel 1: Overzicht van de verklarende factoren die meegenomen zijn in de 

analyses. De waarden van dynamische variabelen kunnen veranderen over de 

jaren.

•	 Tabel 2: Aantal macrofauna-monster locaties per watertype en waterschap. 

Alleen locaties waarvoor monsters bekend waren uit tenminste 3 jaren zijn 

meegenomen.

•	 Tabel 3: Aantal waterkwaliteits-monsters en -locaties waarop de interpolatie 

voor elke fysisch-chemische covariabele gebaseerd is.

•	 Tabel 4: Aantal waterkwaliteits-monsters en -locaties waarvoor de toxische 

druk (uitgedrukt in meer-stoffen PAF) is berekend.

•	 Figuur 3: Trends in dichtheden (aantallen per bemonsterde meter) aan macro-

fauna-insecten. A: Trend in totale dichtheid aan insect-macrofauna (opgeteld 

over de 10 taxonomische groepen en 8 waterschappen). De 95% betrouwbaar-

heids-interval is geplot rond de trendlijn. B: Gemiddelde jaarlijkse verandering 

(in percentages) in het aantal macrofauna-insecten per waterschap.

•	 Figuur 4: Trends in totale dichtheden (aantallen per bemonsterde meter) aan 

macrofauna-insecten voor elk van 10 taxonomische groepen. Blauwe lijnen ge-

ven de trends per waterschap weer, terwijl de blauwe punten de overall trend 

geven volgens de modelvoorspellingen op basis van standaardinstellingen. 

Rechtsonder worden de jaarlijkse veranderingen (in percentages) gegeven per 

taxonomische groep.

•	 Figuur 5: gemiddelde abundantie trend (in percentages verandering per jaar) 

voor de tien taxonomische groepen van macrofauna insecten apart voor drie 

regio’s (verschillende kleuren). West (W): HHD & WHD, Zuid (S): WAM, WD, 

WPM & WRO, Oost (E): WRD & WRIJ.

•	 Figuur 6: Trends in dichtheden (aantal macrofauna-insecten) per genus. A) His-

togram van ln-lambda schattingen op het niveau van genera. Positieve trends 

(’abundance trend’ groter dan 0) geven aan dat het aantal individuen in een 

genus toenam over de jaren van de studie. Rode kleuren vertegenwoordigen de 

73 genera van de dansmuggen, blauwe kleuren de 173 andere genera waarvoor 

we betrouwbare trend-schattingen konden berekenen. B) Relatie tussen de 

trend (ln-lambda) op genus niveau en de abundantie van de individuen van die 

genera in de jaren negentig. De abundantie in de periode 1980-1989 is simpel-

weg benaderd door alle getelde individuen op te tellen over die periode. De 

helling van de gefitte regressielijn is zeer significant: trend=0.11650-0.01377*

	 ln(abundantie), p<0.001. Of een genus wel of niet tot de chironomiden (dans-

muggen) behoort (dus een binomiale factor) had geen effect op helling of inter-

cept van de regressielijn.

•	 Figuur 7: Trends in insect-macrofauna diversiteit. A Gemiddelde soorten-

rijkdom. B Shannon’s diversiteits-index. C Simpson’s diversiteits-index. D 

Shannon’s index van gelijkmatigheid. Voor elke index geeft de blauwe lijn 

het gemiddelde over de 8 waterschappen, terwijl de andere lijnen de variatie 

tussen de waterschappen tonen. NB: in de beginjaren was het aantal monsters 

in sommige waterschappen laag, waardoor de WA-specifieke lijnen voor die 

jaren meer variatie vertonen.

•	 Figuur 8: Trends in nutriëntenconcentraties: A) ammonium, B) fosfor totaal, C) 

stikstof totaal, en D) biochemisch zuurstofverbruik. Blauwe lijnen met knopen 

geven het gemiddelde over de waterschappen, terwijl de andere lijnen de 

afzonderlijke WAs vertegenwoordigen.

•	 Figuur 9: Gemiddelde veranderingen in de oppervlaktes van verschillende 
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landgebruiksklasses van 1996 tot en met 2015, binnen een straal van 1km om 

elk van de macrofauna monsters.

•	 Figuur 10: Gemiddelde verandering in toxiciteit-indices tussen 1990 en 2017. 

A: jaarlijks maximum van de potentieel aangetaste fractie op basis van pesti-

ciden. B: jaarlijks maximum van de potentieel aangetaste fractie op basis van 

industriële stoffen. C: jaarlijks maximum van de potentieel aangetaste fractie 

op basis van verbrandingsverbindingen. Blauwe lijnen met knopen geven het 

gemiddelde over de waterschappen, terwijl de andere lijnen de afzonderlijke 

WAs vertegenwoordigen. De toxische druk van mengsels van chemische stof-

fen is gekwantificeerd met de jaarlijkse maxima van msPAF-NOEC waarden.

•	 Figuur 11: Terug-getransformeerde effecten (z -scores) van covariabelen op 

de abundantie van insecten. Getoonde effecten vatten de effecten op de 10 

insectengroep samen. De horizontale balken laten dus de variatie zien in 

effectgroottes tussen de taxonomische groepen.

•	 Figuur 12: Terug-getransformeerde effecten (z -scores) van covariabelen op de 

abundantie van insecten. Effecten zijn samengevat over de 10 insectengroe-

pen, apart voor de 3 regio’s: A) Oost, B) Zuid, C) West.

•	 Figuur 13: Effecten van veranderingen door de tijd in de waarden van cova-

riabelen op de trend in de abundantie van insecten, apart voor elk van 10 

taxonomische groepen. Gele pijlen geven de richting (toename of afname) en 

relatieve grootte van de veranderingen (van 1990 tot 2017) aan voor elke van 

de covariabelen. De zwarte balken kwantificeren het effect van de verande-

ring in een covariabele op de abundantie-trend. De blauwe, onderbroken lijn 

geeft de som van de zwarte balken weer (soms buiten beeld). De eenheden 

zijn op de log-λ schaal. In deze grafieken zijn de resultaten voor de 8 water-

schappen samengenomen, ongewogen naar de relatieve abundantie van de 

insectengroepen in die waterschappen.

•	 Figuren 14, 15 en 16: Relaties tussen aantalstrends op genus-niveau en ver-

schillende eigenschappen van die genera. Hier geplot staan de herverdelin-

gen van de t-waardes van de mixed-effect modellen waarin steeds één van de 

eigenschappen als covariabele opgenomen zijn. Zwarte balken geven signifi-

cante effecten aan (t-value > 1.96). De richting van de balken (positief of ne-

gatief) hangt af het teken van de correlatie tussen de aantalstrends en scores 

voor een eigenschap op het niveau van de genera. De geteste eigenschappen 

zijn in figuur 14 geprefereerd substraat, voortbeweging, kenmerkend nutriën-

tenniveau, stroomsnelheid, transversale verspreiding (gradiënt vanaf rivieren 

landinwaarts), en longitudinale verspreiding (van bovenstroom tot zee); 

in figuur 15 aquatische stadia, voedsel, wijze van eten, maximum grootte, 

levenscyclusduur, en saprobiteit (een maat van waterkwaliteit); in figuur 16 

geprefereerde pH, reproductie, verbreiding, stadia waarin moeilijk omstan-

digheden overbrugd worden, ademhaling, hoogte, het aantal levenscycli per 

jaar, en temperatuur.

•	 Figuur 17: Relatie tussen aantalstrends op genus-niveau en verschillende 

indicator waarden van soorten in die genera. A: Er blijkt geen verschil in de 

gemiddelde aantalstrend van genera waar van de soorten wel, danwel niet, 

risico lopen door effecten van microverontreinigingen volgens de SPEAR me-

thodiek. 31 genera waren ’at risk’, 203 genera waren ’not at risk’. In panels 

B en C staat de gemiddelde aantalstrend uitgezet tegen indicatorklasse voor 

doeltypen van respectievelijk rivieren (B) en meren (C). De indicatorklasses 

zijn: N (”Negatief”, soorten in een genus zijn voornamelijk negatieve indi-

catoren rivier- en meer-doeltypen), K (”Kenmerkend”, soorten in een genus 

zijn voornamelijk karakteristieke taxa), P (”Positief”, voornamelijk positieve 

indicatoren wanneer soorten dominant zijn), en 0 (genera zonder indicator 

soorten of met een mix van soorten met N, K en P indicaties). Zwarte balken 

geven significante verschillen aan.
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World-wide concerns about declines in insect 

abundance have renewed appreciation for exist-

ing insect monitoring schemes. Longer-running 

schemes present the opportunity to learn which 

insect groups are doing better than others, and 

to look for environmental factors and manage-

ment options that influence the abundance 

trends of insects.

To study insect trends in Dutch surface waters, 

we here analyse a long-running but complex 

dataset of insects in macroinvertebrate samples 

collected by Dutch Water Authorities (WAs). Prior 

quality checks resulted in a subset of one third of 

the WAs, covering parts of the south and east of 

the Netherlands as well as a large region in the 
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Sewer overflow
Photo: Eelke Jongejans
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vicinity of Rotterdam. To arrive at a database based on a reasonably consistent 

sampling protocol, we used a subset of years: from 1990 until 2018. Identity of the 

person collecting the insects in a water body, the WAs, and the length of the sam-

pling transect were included as factors in our analyses. Weather data and water 

quality samples were spatially interpolated to 1,709 macroinvertebrate sampling 

locations (with a total of 12,087 samples).

Our analyses show that taxonomic (genus level) richness and diversity increased 

over the course of 28 years, while the overall abundance of water insects declined 

by 53%. Although dragonflies and caddisflies increased in abundance, most other 

insect orders declined in abundance. In our final models of insect abundance, 

the negative effects of nitrogen, phosphorus and pesticides (i.e. there were fewer 

insects when nutrient concentrations or the combined toxicity of pesticides were 

high) were amongst the strongest effects in most groups. In contrast, non-biting 

midges (Chironomidae) and black flies (Simuliidae) showed positive responses to 

these factors. The presence of greenhouses and proximity of sewer outlets also 

had negative effects on the abundance of most groups. Other factors that showed 

up as important for the measured abundance of at least some groups included 

biochemical oxygen demand, wet natural areas, and growing degree days (a meas-

ure of accumulated heat).

We also quantified how much environmental changes over the course of the 

study period contributed to the abundance trend of various insect groups. Our 

models showed that the halving of N and P concentrations from 1990 to 2018, 

generally had a strongly positive effect on insect abundance trends, as had 

the threefold drop in combined toxicity of measured pesticide levels. Again, 

indicators of eutrophic and polluted conditions, Chironomidae and Simulii-

dae, showed opposing responses to the decreases in nutrients and pesticides. 

Land cover variables had not changed much over this time period and thus did 

not contribute much to abundance trends; nor did most weather variables. In 7 

out of 10 insect groups, the abundance trends were mainly caused by unknown 

factors.

Seemingly in contrast with the observed overall decline in insect abundance, 

positive trends were found for 66% of the 213 insect genera for which we were 

able to determine abundance trends. Looking at the number of insect genera in 

the macroinvertebrate samples, and their evenness and diversity, we see clear 

increases over time. This increase in biodiversity is partly due to the decrease in 

abundance of the most abundant taxa, but also due to the increase of some of the 

previously more rare taxa.

Linking the genus-level trends to traits of insects in those groups showed that 

insects preferring clear, running water had more positive abundance trends 

than those preferring standing waters and sludge. This is confirmed by patterns 

among genera with indicator species. Taxa characteristic for healthy river and 

lake communities showed positive trends, while negative indicators declined in 

abundance.

The emerging pattern is that, in general, water insect communities are recover-

ing from poor water conditions (high nutrient loads and pollutions) in the 1980s. 

As a result of the halving of the nitrogen and phosphorus concentrations and 

pesticide toxicity during the study period, groups like non-biting midges and 

black flies have decreased, which generally have opportunistic life history strate-

gies and are indicators of poor (eutrophic) water quality. Overall, diversity indices 

continuously improved from 1990 till 2017. Since proper reference datasets are 

lacking, it remains unclear to what degree insect communities have recovered. 

However, management aimed at restoring water quality, which was the last phase 

of implementing sanitation measures (sewage systems), appears to have had a 

clear positive effect on the diversity of aquatic insects, favouring indicator species 

of healthy ecosystems. Seeing these encouraging developments, there is every 

reason to continue with the efforts to further improve water quality, as nutrient 

and toxicity levels are still above their maximally allowed concentrations in many 

water bodies. At the same time there is a need to research how management of 

water and vegetation can fully restore pristine insect communities, especially 

with respect to taxa-specific abundances.
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Recent reports in Europe and other parts of the 

world (Biesmeijer et al. 2006; Dirzo et al. 2014; 

Hallmann et al. 2017, 2019; Sánchez-Bayo and 

Wyckhuys 2019; Seibold et al. 2019; van Klink 

et al. 2020b; Zattara and Aizen 2021) suggest 

that terrestrial insects are declining at alarm-

ing rates, but knowledge on community-wide 

abundance trends of insects as well as on causal 

factors driving insect decline remain far from 

complete. Furthermore, how insect communi-

ties respond to changes in potential drivers re-

mains uncertain, partially because of the large 

number of potential drivers (Wagner et al. 2021), 

and the different spatial and temporal scales 

at which they operate. Large-scale, fine-grained, 

multi-taxon and long-term standardized data 

are imperative to assess which groups of insects 

are in decline most, where such insect declines 

occur, and why.

12 

INTRODUCTION

Migrant hawker - Aeschna mixta - paardenbijter 
Photo: Michel de Beer 



13 12 

Freshwater invertebrates are known to be influenced by an array of chemical and 

physical water properties (Von Der Ohe and Liess 2004; Beketov et al. 2008, 2013; 

Posthuma et al. 2019; Birk et al. 2020; Lemm et al. 2021), pesticides (Liess et al. 

2021), climate (Burgmer et al. 2007; Verberk et al. 2016; Jourdan et al. 2018; Baranov 

et al. 2020; Roth et al. 2020; Outhwaite et al. 2020) and land use (Richards and Host 

1994; Weijters et al. 2009). Water quality was very poor in many (but not all) places 

in The Netherlands halfway the 20th century, but important measures were al-

ready taken in the 1970s and 1980s with the construction of new sewage systems 

and wastewater treatment plants. Also in other parts of Europe improvements in 

water quality have occurred (Vaughan and Gotelli 2019), further facilitated by the 

introduction of the EU Water Framework Directive in 2000 (Outhwaite et al. 2020). 

In the Netherlands, water quality has indeed improved in recent decades (van 

Gaalen et al. 2020), with water quality measurements indicating that emissions 

of industrial chemicals, nutrient emissions (N, P) and agricultural pesticides have 

been lowered, and that wastewater treatment has improved. Notwithstanding 

this marked decrease in total volume of application, the toxic pressure from 

new compounds may have increased at the same time, owing to a much higher 

relative toxicity of currently used pesticides and medicine residues. Additionally, 

increased summer droughts, earlier springs and other climatic changes are likely 

to induce variation in annual insect populations. These various developments 

may thus have both positive as well as negative effects on total insect abundance. 

Furthermore, factors like high nutrient concentrations and toxic compounds can 

have interactive effects, as has recently been shown in some empirical studies 

(Birk et al. 2020; Lemm et al. 2021). In order to disentangle potentially opposing or 

interacting effects, we require large-scale and long-term information not just on 

the abundance of macrofauna, but also on the state of potential drivers.

Designing a new macrofauna monitoring program that is large-scale enough to 

cover many regions and types of water bodies nation-wide is a daunting endeav-

our. This is particularly challenging as it is pivotal to also measure all environ-

mental factors relevant now and in the future, and to continue the program 

consistently for a long enough time to detect macrofauna trends and effects of 

environmental changes. However, even when successful, new monitoring will 

obviously not uncover trends and effects of the past decades. Therefore, we take 

on an even bigger challenge in this report: we set out to integrate multiple, 

mostly disconnected datasets that have been constructed for different purposes 

than detecting and understanding abundance trends of insect macrofauna. The 

challenges for such an integration are multifold, even in the Netherlands where 

different monitoring schemes have high spatial resolution and are relatively 

long-running.

In the case of Dutch data on macrofauna, weather, land use, water quality and 

micropollutants, a major challenge is that these variables have been measured 

at different locations and at different points in time. Weather stations supply 

the most consistent, hourly data, but are relatively sparse in space. Water quality 

measurements (e.g. pH, nutrients) are repeatedly (generally several times per year) 

measured at the same locations, but these locations do not necessarily match the 

locations where macrofauna samples are taken. Interpolations to the macrofauna 

sampling locations are therefore required, taking into account temporal trends 

and spatiotemporal covariance structures of these environmental variables, while 

weighting by distance. Substances like pesticides, industrial compounds, and 

combustion products, also known as micropollutants, prove to be particularly 

challenging in that respect: due to their large variety and the relative high costs 

of tests, not all micropollutants are tested for, after a water sample is taken. More-

over, new agricultural and industrial compounds are being developed and taken 

into use regularly, while monitoring for new micropollutants in the environment 

generally starts only years after these compounds and their derivatives entered 

the environment. Also, many test results show that concentrations of specif-

ic micropollutants are below detection limits, which does not mean that the 

concentration is zero, nor that low concentrations are irrelevant for macrofauna. 

As interpolation of single micropollutants therefore prove too difficult, novel 

integration methods need to be developed to arrive at toxic pressure estimates 

for each of different groups of micropollutants (e.g. pesticides, industrial com-

pounds, and combustion products). 



14 

The macrofauna data themselves pose challenges as well. Originally set up to as-

sess the biodiversity and intactness of macroinvertebrate communities and their 

relationships with abiotic factors (van der Hammen 1992; Steenbergen 1993), 

the Dutch macrofauna monitoring scheme is accompanied by a clear sampling, 

processing and estimation protocol (Beers et al. 2014). Already before this protocol 

was published, macrofauna samples were collected and processed in reasonably 

standardized way. In practice, however, subtle but important differences have 

occurred between the different Water Authorities (currently there are 21 WAs in 

the Netherlands) and between individual field and lab workers. Proper analyses 

of macrofauna trends will have to accommodate all these aspects of sampling 

(e.g. how many meters were sampled) and processing (e.g. how larger numbers of 

individuals in a sample have been estimated) in a mechanistic way, rather than 

glossing over potential confounding factors.

In the present study we scrutinize and bring together long-term and large-scale 

datasets on i. freshwater insect macrofauna, ii. weather, iii. land use, iv. physical/

chemical water properties, and v. toxicity. Our goal is to uncover the trend of 

freshwater insect-communities over the past three decades in the Netherlands, 

and to unveil the (potentially opposing) effects of multiple drivers. We integrate 

two powerful ecological assessment methods into the analysis, that of driver-

change effect-on-trend interpretation, and that of trait-based interpretation of 

population trends, in order to characterize developments in freshwater insects 

along trait axes. Specifically, we study trends in abundance of various freshwater 

insects at two taxonomic levels: we analyse abundance trends at the level of 

genera, and for each of 10 insect groups defined at the order or family level. 

Furthermore, we also analyse the species richness diversity of the macrofauna 

samples. In order to do so we develop powerful statistical models that properly 

account for the spatiotemporal design of these measurements, i.e. disentangle 

ecological variation from sampling variation.
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Southern emerald damselfly - Lestes barbarus - zwervende pantserjuffer
Photo: Marga Limbeek
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The Materials and Methods section is organized 

as follows: We first introduce the macroinver-

tebrate dataset, including the monitoring and 

sample processing protocols used by the Water 

Authorities (WAs). We then describe models 

of insect abundance trends at two different 

taxonomic levels: i) per genus and ii) integrated 

over 10 taxonomic groups (e.g. insect orders, see 

Table S.1), as well as models of trends in diversity 

indices. Next, we explain our assessment of the 

effects of a large range of potential explanatory 

variables on the taxonomic-group abundances, 

genus-level diversity, and trends therein. Finally, 

we related abundance trends to characteristic 

traits of the investigated genera. A flow diagram 

of all analyses is given in Fig. 1.

16 

MATERIALS 
AND METHODS

Taking macrofauna samples
Photo: Ilse van de Kraats
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FRESHWATER MACROINVERTEBRATE DATA

In the Netherlands, regional Water Authorities (also called Water Boards, and in 

Dutch: Waterschappen or Hoogheemraadschappen; hereafter: WAs) have amassed 

vast datasets on the abundance and distribution of macrofauna (i.e. small inver-

tebrates still detectable without magnifier or microscope) in Dutch surface water 

bodies (brooks, ditches, ponds, lakes, canals, rivers, etc) since 1980. These data 

have previously been collated and archived under the name Limnodata Neerland-

ica, which are available at http://ipt.nlbif.nl/ipt/resource.do?r=stowa-limnodata. 

However, variable levels of data curating and metadata archiving, as well as meth-

odological sampling differences between the WAs prohibit a straightforward 

trend analysis of species abundances with this national database (Netten et al. 

2010; Verdonschot and van Oosten-Siedlecka 2010). Notwithstanding the protocol, 

field workers potentially differ in how exactly they collected macrofauna sam-

ples. In the lab, the taxonomic level at which specimens were identified varied 

somewhat between the people processing the samples, probably due to varying 

levels of experience and time available. Over the years, better identification 

guides became available, increasing the possibilities to accurately identify insects 

at the species level. 

However, the developmental stage of the caught insects has a big effect on wheth-

er specimens are identified at the species level: in many cases it is not possible 

to identify species at larval or juvenile stages. Earlier attempts to aggregate the 

macrofauna data from all Water Authorities suffered from inconsistencies in 

the recorded abundances and metadata (Netten et al. 2010; Verdonschot and 

van Oosten-Siedlecka 2010). Therefore, it was necessary for us to go back to the 

original data of separate WAs and only select those datasets that were sufficiently 

well-organized and accompanied with necessary metadata (Koese and Zeegers 

2018). To arrive at a subset of the macrofauna data with minimal issues, EIS Neth-

erlands (Koese and Zeegers 2018) assessed the state of the macrofauna datasets 

of all WAs. These researchers checked whether for each macrofauna sample the 

transect length and the identity of the person who collected the sample in the 

field was known, whether the records were complete (i.e. no obvious groups of 

FIGURE 1

Schematic diagram of analyses performed. Red box: response data. Blue boxes: Explanatory 

data. Orange boxes: results. Black arrows: Data link. Blue arrows: spatio-temporal interpo-

lation. Green Arrow: Spatial weighting function.

http://ipt.nlbif.nl/ipt/resource.do?r=stowa-limnodata
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insects missing) and whether the sample processing protocols appeared to have 

been followed. They eventually selected eight WAs with the most complete and 

most consistently archived datasets, and identified which subsets of those data-

sets were of high-enough quality. Two of these eight WAs have recently (1 January 

2017) merged, as has happened frequently in the rich history of Dutch WAs. The 

eight WAs selected based on the quality and availability of their data were:

•	 HHD: Hoogheemraadschap van Delfland

•	 WHD: Waterschap Hollandse Delta (also known as WSHD)

•	 WAM: Waterschap Aa en Maas

•	 WD: Waterschap De Dommel

•	 WPM: Waterschap Peel en Maasvallei (now part of Waterschap Limburg)

•	 WRD: Waterschap Regge en Dinkel (now part of Waterschap Vechtstromen)

•	 WRIJ: Waterschap Rijn en IJssel

•	 WRO: Waterschap Roer en Overmaas (now part of Waterschap Limburg)

The spatial distribution of these WAs is given in Figure 2A. We here use a re-com-

piled database based on the original data of these eight WAs. The datasets were 

thoroughly examined by entomologists of EIS Netherlands (Koese and Zeegers 

2018) for completeness, irregularities, and sufficient level of metadata archiving. 

Since then more data and metadata were made available by several WAs (HHD, 

WPM, WRO, WRIJ) and added to the dataset. These additions required new rounds 

of data checking to fix inconsistencies.

Sampling

Macrofauna samples were collected by field experts of the WAs following a 

prescribed protocol (Beers et al. 2014). To arrive at a multi-habitat sample, locally 

available microhabitats are sampled. The microhabitats can differ in vegetation, 

structure, soil properties and the transparency of the water. Often the total 

length over which samples are taken on a sampling location (i.e. summed over 

the sampled microhabitats) was five meters (5m in 47% of the cases, mean=6.3m, 

sd=2.6m). Earlier samples were largely collected with the same methodology 

as recorded in the protocol. Deviations in e.g. sampling length are recorded in 

FIGURE 2

Map of Dutch Water Authorities (WAs) included in this study (A) along with the number of 

contributing samples per year (B) and the number of sampled years per monitoring location 

(C). Locations had to have samples from at least 3 years to be included in the study. The 

eight WAs are HHD (Hoogheemraadschap van Delfland), WHD (Waterschap Hollandse Del-

ta), WAM (Waterschap Aa en Maas), WD (Waterschap De Dommel), WPM (Waterschap Peel 

en Maasvallei, nowadays part of Waterschap Limburg), WRD (Waterschap Regge en Dinkel, 

nowadays part of Waterschap Vechtstromen), WRIJ (Waterschap Rijn en IJssel) and WRO 

(Waterschap Roer en Overmaas, nowadays part of Waterschap Limburg).
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Figure 2: Map of Dutch Water Authorities (WAs) included in this study (A) along with the number
of contributing samples per year (B) and the number of sampled years per monitoring location (C).
Locations had to have samples from at least 3 years to be included in the study. The eight WAs are
HHD (Hoogheemraadschap van Delfland), WHD (Waterschap Hollandse Delta), WAM (Waterschap
Aa en Maas), WD (Waterschap De Dommel), WPM (Waterschap Peel en Maasvallei, nowadays part
of Waterschap Limburg), WRD (Waterschap Regge en Dinkel, nowadays part of Waterschap Vecht-
stromen), WRIJ (Waterschap Rijn en IJssel) and WRO (Waterschap Roer en Overmaas, nowadays
part of Waterschap Limburg).

further processed in the laboratory, where they were identified at the lowest taxonomic level possible,

and conserved.

For the trend analyses we selected all sites with at least 3 sampling occasions. In total, 12,087

22
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the metadata. Standard macrofauna-nets, with a 20×30cm rectangle opening 

and 0.5-mm mesh size, were used for sampling the water column and substrate 

(Greijdanus-Klaas 1999). All macrofauna specimens caught were collected, sorted, 

preserved, and further processed in the laboratory, where they were identified at 

the lowest taxonomic level possible, and conserved.

For the trend analyses we selected all sites with at least 3 sampling years. In total, 

12,087 unique sampling instances were used in our analysis, distributed over 1,709 

unique monitoring locations, over the period 1990-2018. The number of samples 

have increased with time, from around 200 samples per year in the 1990s, to at 

least 500 samples per year after 2010 (Fig. 2B). Half of the locations (52%) were sam-

pled in 3, 4 or 5 years, but the analysed database also included longer time series: 

16% of the locations were sampled in at least ten years, while 2% of the locations 

was sampled 20 years or more (Fig. 2C). Macrofauna samples were mainly collected 

during spring, summer and early autumn, and rarely during winter.

Species identification

Sample processing was always done according to a nationally standardized pro-

tocol (Beers et al. 2014). Following this protocol, live macroinvertebrate samples 

were first divided into major groups, which were separately stored in appropri-

ate preservation fluids. Next, specimens were identified at species level where 

possible, or at some higher taxonomic level if not. The percentage of specimens 

that were identified at species level is variable over time, with a slight increase in 

taxonomic depth: from approximately 65% identified at species level in 1990 to 

70% in 2018 (Figure S1). Taxa with very high numbers were treated as follows: a 

random subset up to a taxon-specific maximum was identified at the lowest-pos-

sible taxonomic level. The abundance of the remaining individuals was counted 

or estimated, after which the abundances of the identified taxa are extrapolated 

proportionally. In many of the datasets these extrapolations are indicated specif-

ically. For instance, for chironomids numbers surpassed the prescribed threshold 

in approximately 30% of the samples. Depending on the taxonomic group, the 

laboratory protocols (Beers et al. 2014) prescribe a minimum number of individ-

uals required to be identified taxonomically. For example, for chironomids the 

minimum is set at 150 individuals, for Lepidoptera at 25 individuals. In prac-

tice, however, the number of individuals that are actually identified to species 

level varies somewhat between samples, but is dispersed regularly around the 

prescribed minimum number of individuals for each taxonomic group. Sub-sam-

pling within abundant taxa affects the species richness, as this parameter scales 

non-linearly with sample size (i.e. number of individuals in a sample). A further 

complication that arises in 57% of the macroinvertebrate samples is that the 

number of individuals actually determined to species level is not archived, or is 

not certain. In such cases, only the extrapolated numbers abundance is archived, 

meaning that there is no way of telling whether or not species-level abundances 

have been partially extrapolated or by how much. Properly dealing with counted 

and extrapolated counts is also important for the certainty of the model param-

eters. In the present study, we take the approach of modelling these sampling 

processes explicitly, in order to propagate errors of uncertainty to the points of 

interest, such as the temporal dynamics of the focal species.

MACROINVERTEBRATE MODELS

Our modelling strategy to derive trends in abundance of insect macrofauna involved 

two sets of models: one set at the level of taxonomic groups (e.g. insect orders, see 

Supplementary Table S.1) and one set at the genus level. Additionally, we derived 

trend models for four genus-diversity indices. We first ran models on the sum of 

each taxonomic group per macroinvertebrate sample. These models were used to 

derive general trends in total abundance for each taxonomic group. Secondly, we 

developed and ran models per genus to assess spatio-temporal changes at that lower 

taxonomic level. We explain each of the two sets of models separately below.

Given the variation in how macroinvertebrate samples were collected and how 

samples were processed at the species level in the lab, we developed additive 

mixed-effects model to accommodate sources of variation in both ecological 

and sampling processes. Generally, there are five sources of sampling variation 

present in the data:
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1.	 variation in taxonomic depth of species identification over time and 

between WAs,

2.	 variation due to sub-sampling for taxonomic identification,

3.	 variation in sampling-transect length,

4.	 variation between field experts who collected the macrofauna samples, and

5.	 slight variation in data processing protocols between WAs.

For each of these sources of variation, an attempt was made to ameliorate poten-

tial bias in our estimates. Sources of abovementioned variation 1 and 2 are not of 

influence on models at taxonomic group-level, but are of influence in models at 

the genus level, and in estimates of diversity. Sources 3-5 are of influence on all 

modelling estimates.

Taxonomic group models

We fitted two generalized additive models (GAMs, Wood 2017) to the summed 

counts for each taxonomic group. Preliminary results indicated that response 

data were overdispersed relative to a Poisson process, and hence we used a neg-

ative-binomial distribution in our GAMs, with a log link to the predictors. Our 

models (one for each of the 10 taxonomic groups), were of the form

	 (1)

 

where i denotes sample, α a global intercept, x
ij 
covariate levels, along with the 

corresponding linear effects (b
i 
j). f (t|WA) is a smooth annual trend function, 

conditioned on the identity of the Water Authority (WA), f
cc
(s) is a cubic spline 

function of day-number, f
sp

(x, y) denotes a spatial smooth spline of sampling loca-

tion coordinates. r
i
 denotes a random effect for observer and finally o

i
 is the offset 

for log-sampling length. Our null model only included a single environmental 

variable: water type, while our full models involved a number of additional covar-

iates, such as soil type, land use and cover variables, weather variables, chemical 

and physical water properties, and measures of total toxicity (see Table 1). Further 

details on covariates and pre-processing are given in section Explanatory variables.

Genus-level models

At genus level, we fitted a similar model to the null taxonomic-group models (i.e. 

including only water type as covariate; eq. 1). We did not fit genus-level trend 

models for genera for which less than 500 individuals were recorded in total, 

as there needs to be ample data to estimate reliable rates of increase. And even 

when overall numbers were above that threshold, still some models did not con-

verge on reliable trend estimates for some genera. In those cases where a trend 

estimate had very wide confidence intervals, we excluded it from further analyses 

of the genus-level rate of increase.

Diversity models

We considered genus richness, Shannon’s index of diversity, Simpson’s index 

of diversity, and Shannon’s evenness index, to describe trends in genus-level 

diversity over time and per WA. Unit of analysis was the index for each sampling 

instance, and as such we infer on the average diversity per sample. Shannon’s 

diversity index scales between 0 (a single species) to log(S) and depends on both 

the number of genera and their relative abundances in a sample.

(2)

 

The evenness is calculated as H/log(S). The Simpson’s index of diversity is calculat-

ed as

(3)

 

1. variation in taxonomic depth of species identification over time and between WAs,

2. variation due to sub-sampling for taxonomic identification,

3. variation in sampling-transect length,

4. variation between field experts who collected the macrofauna samples, and

5. slight variation in data processing protocols between WAs.

For each of these sources of variation, an attempt was made to ameliorate potential bias in our

estimates. Sources of abovementioned variation 1 and 2 are not of influence on models at taxonomic

group-level, but are certainly of influence in models at the genus level, and in estimates of diversity.

Sources 3-5 are of influence on all modeling estimes, and need to be dealt with explicitly.

Taxonomic group models

We fitted two generalized additive models (GAMs, Wood, 2017) to the summed counts for each

taxonomic group. Preliminary results indicated that response data were overdispersed relative to a

Poisson process, and hence we used a negative-binomial distributions in our GAMs, with a log link

to the predictors. Our models (one for each of the 10 taxonomic groups), were of the form

log(ni) = α +
∑

bijxij + f(t|WA) + fcc(s) + fsp(x, y) + ri + oi (1)

where i denotes sample, α a global intercept, xij covariate levels, along with the corresponding linear

effects (bij). f(t|WA) is a smooth annual trend function, conditioned on the identity of the Water

Authority (WA), fcc(s) is a cubic spline function of day-number, fsp(x, y) denotes a spatial smooth

spline of sampling location coordinates. ri denotes a random effect for observer and finally oi is the
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offset for log-sampling length. Our null model only included a single environmental variable: water

type, while our full models involved a number of additional covariates, such as soil type, land use

and cover variables, weather variables, chemical and physical water properties, and measures of total

toxicity (see Table 1). Further details on covariates and preprocessing are given in section Explanatory

variables.

Genus-level models

At genus level, we fitted a similar model to the null taxonomic-group models (i.e. including only

water type as covariate; eq. 1) We did not fit genus-level trend models for genera for which less than

500 individuals were recorded in total, as there needs to be ample data to estimate reliable rates

of increase. And even when overall numbers were above that threshold, still some models did not

converge on reliable trend estimates for some genera. In those cases where a trend estimate had very

wide confidence intervals, we excluded it from further analyses of the genus-level rate of increase.

Diversity models

We considered genus richness, Shannon’s index of diversity, Simpson’s index of diversity, and Shan-

non’s evenness index, to describe trends in genus-level diversity over time and per WA. Unit of analysis

was the index for each sampling instance, and as such we infer on the average diversity per sample.

Shannon’s diversity index scales between 0 (a single species) to log(S ) and depends on both the

number of genera and their relative abundances in a sample.

H = −
S∑
i

(pilog(pi)) (2)
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The evenness is calculated as H/log(S). The Simpson’s index of diversity is calculated as

J = 1−
∑

(p2i ) (3)

and reflects the probability that two independent draws of an individual in a sample belong to different

genera.

Each of the four indices was was modelled using generalized additive models. We assumed a

negative-binomial error structure with a log link for richness. For other indices, we assumed Gaussian

errors, but we used a log transformation of H, and a logit transformation of evenness and Simpsons

index. Our models for each index (k) read as

l(θk) = α +
∑

bijxij + f(t|WA) + fcc(s) + fsp(x, y) + fr(log(n)) + γlog(p) + ri + oi (4)

where l(.) is the link function specific to index k. Parameters and smooth functions bij, ri, oi, as well

as smooth functions f(.), fcc(.), fsp(.) are defined in this model as in equation 1, while fr(.) denotes

a smooth function of total abundance (i.e. mimicking rarefaction) and γ measures a linear effect on

the log-proportion of the sample identified to at least genus level.

Explanatory variables

To uncover drivers of variation in abundance (at taxonomic group level) and diversity, as well as

trends therein, we expanded the set of explanatory covariates (xij) in equations 1 and 4, by including

land cover and land use, soil properties, physical/chemical water properties, toxicity, and weather

variables. In doing so, we opted to obtain time-varying covariates (where necessary), which allows to

examine, besides their relative effect on the each response value, also how changes in each variable
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and reflects the probability that two independent draws of an individual in a 

sample belong to different genera.

Each of the four indices was modelled using generalized additive models. We 

assumed a negative-binomial error structure with a log link for richness. For oth-

er indices, we assumed Gaussian errors, but we used a log transformation of H, 

and a logit transformation of evenness and Simpsons index. Our models for each 

index (k) read as

(4)

 

where l(.) is the link function specific to index k. Parameters and smooth func-

tions b
ij
, r

i
, o

i
, as well as smooth functions f (.), f

cc
(.), f

sp
(.) are defined in this model 

as in equation 1, while f
r
(.) denotes a smooth function of total abundance (i.e. 

mimicking rarefaction) and γ measures a linear effect on the log-proportion of 

the sample identified to at least genus level.

EXPLANATORY VARIABLES

To uncover drivers of variation in abundance (at taxonomic group level) and 

diversity, as well as trends therein, we expanded the set of explanatory covariates 

(x
ij
) in equations 1 and 4, by including land cover and land use, soil properties, 

physical/chemical water properties, toxicity, and weather variables. In doing so, 

we opted to obtain time-varying covariates (where necessary), which allows to 

examine, besides their relative effect on each response value, also how changes 

in each variable contributed to changes in abundance. Furthermore, we used 

a data-driven approach in determining the spatial scale at which land use and 

land-cover variables affected taxonomic group abundances. An overview of the 

explanatory variables is given in Table 1. Below we describe the source of each of 

these covariates and how we handled the data prior to the analyses.

TABLE 1

Overview of explanatory variables included in the analyses. The values of dynamic variables 

can change over the duration of the study period.

Parameter Characterization Years Source

Water type Static - WAs; CBS 2019

Protected areas Static - Nationaal Georegister

Soil type Static - Grondsoortenkaart

Land cover Dynamic/Scale-

dependent

1996-2019 CBS 2019; Kadaster 

2019

Distance to sewage treatment plant Dynamic 1990-2018 WAs

Weather variables Dynamic 1990-2018 KNMI

Physical/Chemical properties Dynamic 1990-2018 WAs

Toxicity Dynamic 1990-2018 WAs

Water type

Owing to the large variety in types of surface water bodies, a water classification 

system was deemed necessary to characterize the sampled water bodies. Our clas-

sification was largely based on established Water Framework Directive definitions, 

which classifies water bodies according to major classes (e.g. lakes, ponds, rivers, 

canals, streams and ditches), with further subdivision depending on size, depth or 

flow-speed classes, or in some cases on soil type. A sizeable part of the macrofauna 

monitoring locations (24%) is not situated in a KRW-water body, and therefore 

have not been assigned a KRW-definition. For these locations we derived addition-

al information from the national land cover map (TOP10NL: see www.pdok.nl), 

that classifies water bodies as ditch, waterways of 3-6 and 6-12 meter, rivers, and 

lakes. An overview of the number of macroinvertebrate sampling locations per wa-

ter type is given in table 2. A full account of the relation between watertype-classi-

fication in this study with original water type classification from the two sources 

is given in table S.2.

The evenness is calculated as H/log(S). The Simpson’s index of diversity is calculated as

J = 1−
∑

(p2i ) (3)

and reflects the probability that two independent draws of an individual in a sample belong to different

genera.

Each of the four indices was was modelled using generalized additive models. We assumed a

negative-binomial error structure with a log link for richness. For other indices, we assumed Gaussian

errors, but we used a log transformation of H, and a logit transformation of evenness and Simpsons

index. Our models for each index (k) read as

l(θk) = α +
∑

bijxij + f(t|WA) + fcc(s) + fsp(x, y) + fr(log(n)) + γlog(p) + ri + oi (4)

where l(.) is the link function specific to index k. Parameters and smooth functions bij, ri, oi, as well

as smooth functions f(.), fcc(.), fsp(.) are defined in this model as in equation 1, while fr(.) denotes

a smooth function of total abundance (i.e. mimicking rarefaction) and γ measures a linear effect on

the log-proportion of the sample identified to at least genus level.

Explanatory variables

To uncover drivers of variation in abundance (at taxonomic group level) and diversity, as well as

trends therein, we expanded the set of explanatory covariates (xij) in equations 1 and 4, by including

land cover and land use, soil properties, physical/chemical water properties, toxicity, and weather

variables. In doing so, we opted to obtain time-varying covariates (where necessary), which allows to

examine, besides their relative effect on the each response value, also how changes in each variable

27

http://www.pdok.nl


22 

TABLE 2

Number of macroinvertebrate sampling locations per water type and Water Authority (WA). 

Only locations with at least three sampling years were included in the study. WFD = Water 

Framework Directive.	

HHD WAM WD WHD WPM WRD WRIJ WRO

Ditch 100 32 14 1 0 2 11 0

Slow running water 5 68 118 4 162 153 78 38

Fast running water 0 5 0 0 10 17 0 79

Canals 141 25 6 68 10 5 13 0

Ponds 0 6 0 0 25 36 0 16

Small shallow lakes 15 0 0 0 2 7 0 10

Large lakes 0 0 0 17 0 0 0 0

Brackish water 5 0 0 34 0 0 0 0

Ditch non-WFD 0 0 0 83 0 0 40 0

Waterway 3-6m non-WFD 0 0 0 57 0 0 1 0

Waterway 6-12m non-WFD 2 0 0 121 0 0 5 0

River non-WFD 0 0 0 46 0 0 1 0

Small lakes non-WFD 1 0 0 12 0 0 1 0

Land use and land cover

For each macrofauna sampling location, we extracted information on soil type, 

amount of protected area, proximity to sewage treatment plants, and land use. 

Information on soil type around monitoring locations was extracted from the 

Dutch Soil Map (WUR-Alterra 2006). We recorded which part of this surround-

ing area was protected (e.g. NATURA2000 or lower-level protection areas, nature 

parks, etc.) within a radius of 1km around each monitoring location. Data were 

obtained from the ’Nationaal Georegister’ (www.nationaalgeoregister.nl).

Sewage treatment plants are a source of water contamination in many parts of 

the world. In the Netherlands around 327 facilities exist, out of which 140 are 

located within the study area. To include possible effects of sewage pollution we 

used the proximity (i.e. the inverse of distance) of each measurement location to 

the nearest treatment plant. While doing so, the proximity was set to zero for all 

locations not likely to be influence by sewage water, such as for example sam-

pling points in different water-catchment areas than that of the treatment plant, 

or sampling points clearly located upstream prior to sewage discharge points.

Information on land use was extracted from a vector-land use database (CBS 2019; 

Bestand Bodemgebruik), available for the years 1996, 2000, 2003, 2006, 2008, 

2010, 2012 and 2015. Inevitably, we assumed no changes in landscape configura-

tion in the period prior to 1996 and after 2015. Within a radius of 1km from the 

sampling location, we considered the area of the following land use categories: 

(i) agricultural land, subdivided into area for greenhouses, and remaining, (ii) for 

est area, (iii) dry natural areas, (iv) wet natural areas, and (v) build-up areas. Ad-

ditional subdivision of remaining-agricultural land was achieved by integrating 

the Dutch Topographic Map (Top10NL, Kadaster 2012), which classifies land cover 

into grassland and cropped land, amongst other classes. For land use defined 

as remaining-agricultural land, we thus further subdivided it into grassland or 

cropped land. All computations were raster-based, at a resolution of 25m2, imply-

ing that land use was described by over 5000 cells per sampling instance.

Coupling land use (surface data) to monitoring locations (point data) requires 

knowledge on the spatial scale at which potential land-cover attributes may affect 

insect macrofauna, in order to achieve maximum explanatory power of the mod-

els. Instead of relying on an a-priori defined spatial scale (e.g. percentage land-cov-

er in a buffer of 500 meters), we developed a data-driven approach to identify 

the most appropriate scale at which to measure spatial covariate values for each 

taxonomic group. Additionally, one may envisage that the effect of a particular 

spatial covariate may diminish with distance to the focal point. To accommodate 

this in our models, we used a distance-weighted description of each variable, in 

https://www.nationaalgeoregister.nl
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a manner by which values of the covariate at close proximity to sampling points 

contribute more than values at increasing distance from measurement points.

The relative contributions are described by weights which themselves are 

structured by low-rank parametric kernels, that depend only on scale and shape 

parameters (two parameters for each category of each variable, see Figure S4). The 

scale parameters can be interpreted as a measure of the ”effective spatial scale” at 

which ecological processes are affected by a particular covariate, while the shape 

parameters as the steepness and tail length of the weighting function. More 

details on this approach are provided in Appendix C.

In practice, this approach is exhaustive (i.e. data-hungry), particularly with many 

covariates and covariate levels, increasing with spatial resolution and range of 

search. To reduce dimensionality of the computations, we first ran univariate 

models between response variables (i.e. sums per taxonomic groups) and each 

covariate, and identify the scale and shape of each spatial weighting function. 

We then fixed weighting parameters for each covariate in all subsequent analyses 

involving all (or subsets) of these covariates. Additionally, we used a 25m grid 

representation of land cover within a radius of 500 meters around each measure-

ment location, with binary values for each category.

Weather variables

Weather data from 49 weather stations were obtained from the Royal Dutch Me-

teorological Institute (www.knmi.nl), where we extracted daily weather informa-

tion for the period 1990-2018. We considered ambient temperature, precipitation 

and potential evapotranspiration. These three weather variables were interpo-

lated to macrofauna monitoring locations using a combination of GAMs and 

spatial interpolation of the residuals (see Supplementary Information: Appendix 

A) for the full time period (i.e. daily, form 1-jan 1989 to 31-Dec-2018 and for each 

location). From the interpolated data, we derived multiple statistics, mean daily, 

weekly and monthly values of temperature as well as daily, weekly and monthly 

sum of precipitation and of evapotranspiration. Additionally, we considered 

growing degree days (i.e., the accumulated heat above 5oC), in order to account 

for potential phenological effects. To account for lagged effects, we considered 

the number of frost days in the preceding winter (Dec-Feb), as well as the sum of 

precipitation and mean temperature in the previous season (July-September).

Physical/chemical properties

Data on concentrations of chemical and organic compounds in the water have 

been collected by, or commissioned by, the WAs according to fixed protocols as 

part of regional water quality assessments (www.helpdeskwater.nl/onderwer-

pen/monitoring/toetsen-beoordelen). Raw data were checked for validity and 

completeness by RIVM in collaboration with Ecofide as part of a related project, 

and were made available to us by Jaap Slootweg. In total, between 12 thousand 

and 400 thousand samples were included in the present analysis (depending on 

variable), covering between 730 and 6884 unique locations (Table 3). As not all 

water quality variables were measured for each sample, the datasets for specific 

variables were considerably smaller. Despite the remarkably high density of spa-

tio-temporal information, measurements of physical and chemical water prop-

erties are available at approximately 75% of the macrofauna sampling locations. 

Furthermore, water samples for chemical analyses often were not collected on 

the same day as the macrofauna sampling. Hence, there is only a partial spati-

otemporal overlap between water quality samples and macrofauna samples. As 

the overlap between macrofauna and physical/chemical sampling locations was 

only partial, we require a means to arrive at estimates for each parameter at the 

location and date of each macrofauna sample (see Table 3). Expectations (usu-

ally concentrations, but also scales such as water temperature) at macrofauna 

sampling points were derived using a combination of Generalized linear models 

and residual spatio-temporal interpolations. Per WA, we modelled the quantities, 

e.g. log(concentration), as a function of water type, soil type, spatial coordinates, 

year and day-of-the-year, where the response variables were modelled as smooth-

splines of the space and time variables (x,y,t). We used a tobit-1 link (Tobin 1958) to 

account for left censoring, where necessary. With this method we also took care 

of potential effects of changing detection limits over time. 

http://www.helpdeskwater.nl/onderwerpen/monitoring/toetsen-beoordelen
http://www.helpdeskwater.nl/onderwerpen/monitoring/toetsen-beoordelen
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TABLE 3

Overview of sample sizes for each of the physical/chemical variables included in the analysis.

Variable Locations Samples

NH4 6495 325862

BOD 4582 204431

Cd 2647 90886

Ca 4331 70782

Cl 6682 436302

Chloro. alpha 3243 126713

Cr 2618 84761

PO4 6495 306819

Sum P 6670 333341

Cu 3055 107218

Pb 2623 85778

Mg 3695 63941

Na 3534 52898

Ni 2728 92242

Suspended matter 4526 155328

NO2+NO3 5400 274879

Sum N 6256 296762

Water temperature 6796 381233

HCO3 3917 52487

Zn 3052 107178

pH 6884 378892

O 6598 356967

Our models read as:

(5)

 

where α an intercept, b
ij
 and x

ij
 coefficients and corresponding covariates (water 

type, soil type, precipitation in the previous week and month), f (t|WA) a smooth 

function of year conditional on WA, f(s) a seasonal smooth component, f
sp

(x, y) a 

spatial smooth component, and r
i
 a random intercept for watershed identity.

Model residuals were subsequently interpolated in both time and space to mon-

itoring locations at measurement date. Further details of how we modelled and 

interpolated the physical/chemical water properties, as well as how we calculated 

residuals for measurements below the detection threshold, can be found in the 

Supplementary Information: Appendix B. Results of spatial and temporal correla-

tion used in the interpolation of each compound, can be found in Table S.3.

Toxic pressure of mixtures of chemical pollutants

In order to include measures of toxicity of chemical substances originating from 

pesticide application, combustion or industry in our models, and at the same 

time, to deal with the multidimensionality problem of over 1400 measured 

substances in surface waters, we relied on multiple-substances Potential Affected 

Fraction (hereafter msPAF) for compound mixtures of chemicals (Posthuma et al. 

2002; de Zwart and Posthuma 2005). The Potentially Affected Fraction (PAF value) 

of a compound is based on large numbers of lab experiments, and is a measure 

of ecotoxicological risk posed by a substance: it represents the proportion of 

species that is affected by a substance (Klepper et al. 1998). The combined impact 

of multiple substances (e.g., for each of the three groups of chemical pollutions 

assessed here) is expressed as msPAF, of which two variants exists, acute (EC50; 

half maximum effect concentration) and chronic (NOEC; No Observed Effect 

Concentration) (Posthuma and de Zwart 2012), of which we used the latter. Fur-

Table 3: Overview of sample sizes for each of the physical/chemical variables included in the analysis.
Variable Locations Samples
NH4 6495 325862
BOD 4582 204431
Cd 2647 90886
Ca 4331 70782
Cl 6682 436302
Chloro. alpha 3243 126713
Cr 2618 84761
PO4 6495 306819
Sum P 6670 333341
Cu 3055 107218
Pb 2623 85778
Mg 3695 63941
Na 3534 52898
Ni 2728 92242
Suspended matter 4526 155328
NO2+NO3 5400 274879
Sum N 6256 296762
Water temperature 6796 381233
HCO3 3917 52487
Zn 3052 107178
pH 6884 378892
O 6598 356967

link (Tobin, 1958) to account for left censoring, where necessary. With this method we also took care

of potential effects of changing detection limits over time. Our models read as:

l(y) = α +
∑

bijxij + f(t|WA) + fcc(s) + fsp(x, y) + ri (5)

where α an intercept, bij and xij coefficients and corresponding covariates (water-type,soil-type, pre-

cipitation in previous week and month), f(t|WA) a smooth function of year conditional on WA, f(s)

a seasonal smooth component, fsp(x, y) a spatial smooth component, and ri a random intercept for

watershed identity.

Model residuals were subsequently interpolated in both time and space to monitoring locations at

measurement date. Further details of how we modelled and interpolated the physical/chemical water
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thermore, only substances above detection/reporting limits were included in the 

calculations of mixtures toxic pressure.

A further problem in using mixture toxic pressure data, is that the calculation it-

self relies to a large extent on the number of substances analysed in the samples, 

with usually a strict increase in msPAF value with increasing number of substanc-

es measured. Additionally, the sets of substances that are tested for varied over 

time, among WAs, and even between samples. This renders direct comparison be-

tween samples problematic. As such, we used the maximum value of the msPAF 

values of measurements per location-year combinations, under the premise that 

toxicity is at least as high as the maximum msPAF value in a given year and at a 

given location.

To differentiate sources of toxicity, we categorized the large number of substanc-

es available in three groups (pesticides, industrial substances, and combustion 

by-products), while several substances belonging to either pharmaceutical or 

household-products were excluded due to insufficient samples sizes. As such, 

toxicity is described in our models as a three-component structure, differentiat-

ing sources of toxic pressure on insect macrofauna. An overview of the number 

of samples and locations used for modelling for the three groups of toxicants 

can be found in Table 4. Please note that we decided to leave heavy metals out of 

these toxic pressure estimates. Instead, heavy metals, whether occurring natu-

rally or due to pollution, were treated like other water quality variable that were 

measured much more consistently than the chemical pollutants for which we 

expressed mixtures toxic pressure as msPAF.

We ran General Additive Models (GAMs), assuming a beta distribution, and a 

logit link, to derive mean trends per waterboard authority, and per chemical 

pollutant-group mixture toxic pressure subcategory, followed subsequently 

by residual interpolation on an annual basis. Our GAMs read, for each sub-

category θ:

 

(6)

 

where alpha is an intercept, bij
 and x

ij
  coefficients and corresponding covariates 

(water-type,soil-type),  f (t|WA) a smooth function of year conditional on WA, f
sp

(x, 

y) a spatial smooth component, and r
i
  a random intercept effect for watershed 

identity. Finally, to correct for the number of substances (k) measured at the 

maximum per year-location measurement, we included a linear effect of γ in 

the model. This was necessary because water samples for which more chemical 

pollutants are tested, tended to have somewhat higher msPAF values.

Furthermore, when macrofauna sampling locations and toxicity measurement 

locations did not match, we spatially interpolated the annual-maximum msPAF 

values to those macrofauna sampling locations using similar methods as with 

the physical/chemical variables (see Table 4 and Supplementary Information: 

Appendix B), where serial covariation at the daily level was substituted for serial 

correlation at the annual level.

TABLE 4

Overview of sample sizes for each of the toxic pressure variables (one for each of three 

subcategories of chemical pollutants) included in the analysis. Toxic pressure of mixtures is 

expressed as msPAF values.

Variable Locations Samples

msPAF-Combustion 730 12785

msPAF-Industrial 5688 250343

msPAF-Pesticide 1376 35324

To differentiate sources of toxicity, we categorized the large number of substances available in

three groups (pesticides, industrial substances, and combustion by-products), while several substances

belonging to either pharmaceutical or household-products were excluded due to insufficient samples

sizes. As such, toxicity is described in our models as a three component structure, differentiating

sources of toxic pressure on insect macrofauna. An overview of the number of samples and locations

used for modelling for the three groups of toxicants can be found in Table 4. Please note that we

decided to leave heavy metals out of these toxic pressure estimates. Instead, heavy metals, whether

occurring naturally or due to pollution, were treated like other water quality variable that were

measured much more consistently than the chemical pollutants for which we expressed mixtures toxic

pressure as msPAF.

We ran General Additive Models (GAMs), assuming a beta distribution, and a logit link, to

derive mean trends per waterboard authority, and per chemical pollutant-group mixture toxic pressure

subcategory, followed subsequently by residual interpolation on an annual basis. Our GAMs read, for

each subcategory θ:

logit(msPAFθ) = α +
∑

bijxij + f(t|WA) + fsp(x, y) + ri + γlog(k) (6)

where alpha an intercept, bij and xij coefficients and corresponding covariates (water-type,soil-type),

f(t|WA) a smooth function of year conditional on WA, fsp(x, y) a spatial smooth component, and

ri a random intercept effect for watershed identity. Finally, to correct for the number of substances

(k) measured at the maximum per year-location measurement, we included a linear effect of γ in the

model. This was necessary because water samples for which more different chemical pollutants are

tested, tended to have somewhat higher msPAF values.

Furthermore, when macrofauna sampling locations and toxicity measurement locations did not
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Principal Component Analysis

To account for confounding among interpolated variables, we performed Prin-

cipal Component Analyses (hereafter PCA) and decorrelated the variables using 

the rotation matrix of the PCA. Hence, coefficient b
ij
 in equations 1 and 4, refer to 

scaled and decorrelated variables x
ij
. Moreover, in our full-models, we retained all 

38 axes of the PCA losing no information by the decorrelation process. All varia-

bles were scaled to zero-mean and unit variance prior to PCA-transformation. For 

an overview of all axes and how variables correlated to PCA-axes see Fig. S5 and 

for a full correlation matrix see Fig. S6.

Estimated relative effects of explanatory variables on 

abundance, diversity and trends

To derive the relative effects of covariates x on abundance and diversity indices, 

we used the following equation

(7)

 

where R is the rotation matrix from the PCA analysis, and z the vector of z-scores 

of coefficients from our macrofauna abundance and diversity models.

To derive the effects of changes of covariates x on the trends of macrofauna 

groups and diversity, we used the following approach:

 

(8)

 

 

where λ′θ is the expected population growth rate in abundance of each taxonom-

ic group when only one covariate (x) changed from its mean value in 1990 to its 

mean value in 2018 (i.e., marginal temporal predictions), and 

where R is the rotation matrix from the PCA analysis, and z the vector of z -scores of coefficients

from our macrofauna abundance and diversity models.

To derive the effects of changes of covariates x on the trends of macrofauna groups and diversity,

we used the following approach:

Eλ = log(λ̄)− log(λ′
θ) (8)

where λ′
θ is the expected population growth rate in abundance of each taxonomic group when only one

covariate (x) changed from its mean value in 1990 to its mean value in 2018 (i.e., marginal temporal

predictions), and λ̄ the growth rate as calculated when all covariates change from their 1990 to their

2018 mean values (i.e. full temporal predictions).

Trend-trait relationships

Since we expect considerable variation in the abundance trends among insect groups, we also inves-

tigated whether some of that variation could be explained by differences in traits of the insect taxa.

It could for instance be that environmental changes that took place during the study period have

favored species with certain traits over others. We considered a wide range of traits, from morphology

(maximum size), life history (e.g. number of generations per year), to preferences (e.g. for tempera-

ture). We also tested whether insect taxa that are indicators for desired insect communities in rivers

or lakes, had different abundance trends than taxa that indicate undesirable insect communities. The

full list of investigated traits can be found below.

Ideally we would relate the variation in trends to traits at the species level. However, for 30% of

the sampled individuals identification was not performed at the species level. Moreover, trait data

were not always available at the species level either. Since several of the considered traits have similar

values among species within the same genus, and since we know the genus of 90% of the sampled
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as calculated when all covariates change from their 1990 to their 2018 mean 

values (i.e. full temporal predictions).

TREND-TRAIT RELATIONSHIPS

Since we expect considerable variation in the abundance trends among insect 

groups, we also investigated whether some of that variation could be explained 

by differences in traits of the insect taxa. It could for instance be that environ-

mental changes that took place during the study period have favoured species 

with certain traits over others. We considered a wide range of traits, from 

morphology (maximum size), life history (e.g. number of generations per year), 

to preferences (e.g. for temperature). We also tested whether insect taxa that are 

indicators for desired insect communities in rivers or lakes, had different abun-

dance trends than taxa that indicate undesirable insect communities. The full 

list of investigated traits can be found below.

Ideally, we would relate the variation in trends to traits at the species level. How-

ever, for 30% of the sampled individuals, identification was not performed at the 

species level. Moreover, trait data were not always available at the species level 

either. Since several of the considered traits have similar values among species 

within the same genus, and since we know the genus of 90% of the sampled indi-

viduals, we decided to perform the trend-trait analyses at the genus level. Thus, 

we used the ln-lambda values resulting from the genus-level trend analyses as 

the response variable in the trend-trait analyses. Due to the high number of traits 

considered, we tested the explanatory power of each trait separately in a series 

of linear mixed-effect models with insect order as a random effect (to account 

for potential phylogenetic patterns) and weighted by the inverse of the standard 

error of the ln-lambda estimates. These inverse standard errors were rescaled to a 

maximum of 1 prior to the analyses.

Several sources were used for trait data: 21 traits were extracted from Tachet et al. 

(2010), 1 trait from the SPEARpesticides database (Liess and Von Der Ohe 2005), 

and 2 traits from van der Molen et al. (2018). Here we will describe each in turn, 

match, we spatially interpolated the annual-maximum msPAF values to those macrofauna sampling

locations using similar methods as with the physical/chemical variables (see Table 4 and Supplemen-

tary Information: Appendix B), where serial covariation at the daily level was substituted for serial

correlation at the annual level.

Table 4: Overview of sample sizes for each of the toxic pressure variables (one for each of three
subcategories of chemical pollutants) included in the analysis. Toxic pressure of mixtures is expressed
as msPAF values.

Variable Locations Samples
msPAF-Combustion 730 12785
msPAF-Industrial 5688 250343
msPAF-Pesticide 1376 35324

Principal Component Analysis

To account for confounding among interpolated variables, we performed Principal Component Anal-

yses (hereafter PCA) and decorrelated the variables using the rotation matrix of the PCA. Hence,

coefficient bij in equations 1 and 4, refer to scaled and decorelated variables xij. Moreover, in our

full-models, we retained all 38 axes of the PCA losing no information by the decorrelation process. All

variables were scaled to zero-mean and unit variance prior to PCA-transformation. For an overview

of all axes and how variables correlated to PCA-axes see Fig. S5 and for a full correlation matrix see

Fig. S6.

Estimated relative effects of explanatory variables on abundance, diversity and trends

To derive the relative effects of covariates x on abundance and diversity indices, we used the following

equation

En = Rz (7)
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from our macrofauna abundance and diversity models.

To derive the effects of changes of covariates x on the trends of macrofauna groups and diversity,

we used the following approach:

Eλ = log(λ̄)− log(λ′
θ) (8)

where λ′
θ is the expected population growth rate in abundance of each taxonomic group when only one

covariate (x) changed from its mean value in 1990 to its mean value in 2018 (i.e., marginal temporal

predictions), and λ̄ the growth rate as calculated when all covariates change from their 1990 to their

2018 mean values (i.e. full temporal predictions).

Trend-trait relationships

Since we expect considerable variation in the abundance trends among insect groups, we also inves-

tigated whether some of that variation could be explained by differences in traits of the insect taxa.

It could for instance be that environmental changes that took place during the study period have

favored species with certain traits over others. We considered a wide range of traits, from morphology

(maximum size), life history (e.g. number of generations per year), to preferences (e.g. for tempera-

ture). We also tested whether insect taxa that are indicators for desired insect communities in rivers

or lakes, had different abundance trends than taxa that indicate undesirable insect communities. The

full list of investigated traits can be found below.

Ideally we would relate the variation in trends to traits at the species level. However, for 30% of

the sampled individuals identification was not performed at the species level. Moreover, trait data

were not always available at the species level either. Since several of the considered traits have similar

values among species within the same genus, and since we know the genus of 90% of the sampled
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starting with the Tachet et al. (2010) database. This database contains fuzzy scores 

(0, 1, 2 or 3) for 21 traits, each with 2 or more categories. For instance, for the trait 

’aquatic stages’ the database contains four categories: egg, larva, nymph, and 

adult. For each taxon in the database fuzzy scores for each of these categories in-

dicate the degree to which those life cycle components are aquatic. The following 

list shows the 21 traits and their categories:

•	 Maximal potential size: ≤.25cm; >.25-.5cm; >.5-1cm; >1-2cm; >2-4cm; >4-8cm; 

>8cm

•	 Life cycle duration: ≤1 year; >1 year

•	 Potential number of cycles per year: <1; 1; >1

•	 Aquatic stages: egg; larva; nymph; adult

•	 Reproduction: ovoviviparity; isolated eggs, free; isolated eggs, cemented; 

clutches, cemented or fixed; clutches, free; clutches, in vegetation; clutches, 

terrestrial; asexual reproduction

•	 Dispersal: aquatic passive; aquatic active; aerial passive; aerial active

•	 Resistance forms: eggs, statoblasts; cocoons; housings against desiccation; 

diapause or dor mancy; none

•	 Respiration: tegument; gill; plastron; spiracle; hydrostatic vesicle

•	 Locomotion and substrate relation: flier; surface swimmer; full water swim-

mer; crawler; burrower; interstitial; temporarily attached; permanently 

attached

•	 Food: microorganisms; detritus <1mm; dead plant ≥1mm; living microphytes; 

living macro phytes; dead animal ≥1mm; living microinvertebrates; living 

macroinvertebrates; vertebrates

•	 Feeding habits: absorber; deposit feeder; shredder; scraper; filter-feeder; pierc-

er; predator; parasite

•	 Transversal distribution: river channel; banks, connected side-arms; ponds, 

pools, disconnected side-arms; marshes, peat bogs; temporary waters; lakes; 

groundwaters

•	 Longitudinal distribution: crenon; epirithron; metarithron; hyporithron; 

epipotamon; metapotamon; estuary; outside river system

•	 Altitude: lowlands; piedmont level; alpine level

•	 Substrate (preferendum): flags/boulders/cobbles/pebbles; gravel; sand; silt; 

macrophytes; microphytes; twigs/roots; organic detritus/litter; sludge

•	 Current velocity (preferendum): null; slow; medium; fast

•	 Trophic status (preferendum): oligotrophic; mesotrophic; eutrophic

•	 Salinity (preferendum): fresh water; brackish water

•	 Temperature: psychrophilic; thermophilic; eurythermic

•	 Saprobity: xenosaprobic; oligosaprobic; b-mesosaprobic; a-mesosaprobic; poly-

saprobic

•	 pH (preferendum): ≤4; >4-4.5; >4.5-5; >5-5.5; >5.5-6; >6

Some genera for which we had ln-lambda estimates did not occur in the Tachet 

et al. (2010) database. In those cases, we checked whether data were available for 

another genus in the same tribe. If not, we subsequently searched for genera in 

the same subfamily, family, or infraorder. However, in the end we decided to only 

include in the analyses those genera for which both the abundance trend and 

trait information was directly available at the genus level.

In order to be able to use the fuzzy scores for each of the categories of a specific 

trait for the analyses of variation in the genus-level abundance trend (ln-lambda), 

we had to account for the multivariate (i.e. multiple categories) and multinomial 

(i.e. fuzzy scores 0, 1, 2 or 4) nature of the trait data. We therefore used the ’ade4’ 

R package (Dray and Dufour 2007) to perform a Fuzzy Principal Components Anal-

ysis, first using the function ’prep.fuzzy.var’ and then ’dudi.fpca’. 

The resulting, mutually-uncorrelated fpca axes were then used as explanatory 

variables in the linear mixed-effect models described above. Afterwards we trans-

lated t-values of the fpca axes of the fitted linear mixed-effect model (lme) to the 

original trait categories, in order to make the results easier to interpret. We used 

the loadings of the trait categories on the fpca axes: we rescaled the absolute 

values of the loadings of each fpca axis, so they each summed to 1. This way we 

redistributed the t-values of the fpca axes over the trait categories. t-values larger 
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than 1.96 were deemed significant. Whenever ln-lambda correlated negatively 

with the fuzzy scores of a trait category, its estimated t-value was depicted as a 

negative value.

The second trait source was the SPEARpesticides (Species At Risk) database (Liess 

and Von Der Ohe 2005). We used their estimates of sensitivity to toxic compounds 

in the same way as Liess and Beketov (2011): if a taxon had a sensitivity value 

lower than -0.36 and had three characteristics (low generation time, no possibility 

to recolonize from a refugium, and exposed at crucial times), we classified that 

taxon as ’at risk’. All others were ’not at risk’. If the genera for which we had 

ln-lambda estimates did not occur in the Spear database, we attempted to make 

links at subsequently higher taxonomic levels. This was necessary because links 

at the genus level could only be made for a minority of the genera. The frequen-

cy of the taxonomic level of these links will be shown in the Results section. 

Whenever at-risk-or-not information was available for multiple species within a 

genus, we chose the most frequently occurring factor level. Afterwards we tested 

whether being at risk could explain variation in ln-lambda, using the lme struc-

ture detailed above.

The third and final source of trait data is the STOWA report by van der Molen et 

al. (2018). From the appendices of van der Molen et al. (2018), we extracted infor-

mation about indicator taxa, separately for lakes and rivers. For lakes we included 

lake types M12, M14, M20, M21 and M23, thus excluding brackish lakes of types 

M27 and M31. For rivers we included R5, R6, R7, R12, R13, R14, R15, R16, R17 and 

R18. Each of the species (or their absence) is an indicator of one or more of the 

river and lake types. The appendix tables in Altenburg et al. (2018) thus contain 

for each water type by species combination either a P (positive indicator when 

dominant), N (negative indicator when dominant), K (characteristic taxon) or 

nothing. As multiple species could be listed within a genus, we tallied all the P, N, 

and K within that genus. Whenever one of the letters dominated the tallies (i.e. 

more than 75% of all tallies), the genus was described as being predominantly in 

that category. If none of them dominated, or if no species of a genus occurred in 

the tables, that genus was noted as being not a strong indicator. For clarity: we 

performed this classification twice, once for rivers, once for lakes. Afterwards we 

performed linear mixed-effect models with either the lake-indicator factor or the 

river-indicator factor. 
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Larva of mayfly - Ephemera vulgata - gewone haft
Photo: Bureau Biota
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ABUNDANCE TRENDS OF FRESHWATER 

MACROFAUNA INSECTS

Trends were calculated based on a series of Gen-

eralized Linear Additive models for each of the 

taxonomic groups. For all insects combined, the 

trend in total abundance was found to be nega-

tive: total insect abundance declined by 52.78% 

from 1990 till 2017 (Fig. 3A). This corresponds 

to, on average, a 2.7% decline per year (note that 

in order to retain a proportion of 0.4722 of the 

initial abundance after 27 years, you need an 

annual rate of 0.4722(1/27), which gives 0.9725918 

and thus a 2.74082% decline per year). 

However, there are noticeable differences in the 

average rate of change among the 8 WAs (Fig. 3B), 

30 

RESULTS

Variable damselfly - Coenagrion pulchellum - variabele waterjuffer
Photo: Michel de Beer
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with WRIJ, HHD, WD, and WRD experiencing much larger decline rates (between 

-5% and -3% per year; see also Fig. S7) than other WAs, while only WPM had a 

moderate average increase over time. Some of the fluctuations in the trend in 

overall insect abundance (Fig. 3A) are related to fluctuations in specific WAs: for 

instance, the temporary peak in 2000 coincides with a peak in WRD (Fig. S7).

At the level of the different taxonomic groups, opposing trends over time can 

be discerned. While most groups declined in density over the study period (i.e., 

over 27 years from 1990 till 2017), increases were observed too (Fig. 4). Positive 

trends were found for Trichoptera, Odonata, and Lepidoptera (the latter being a 

low-abundance group in the studied database). The other seven insect groups had 

negative trends, including the most abundant groups: Chironomidae, Ephemer-

optera, Heteroptera, and ’other’ Diptera (i.e., flies and mosquitoes not in the 

Chironomidae or Simuliidae families).

To see whether the abundance trends of the ten taxonomic groups were consist-

ent across the spatial range of the WAs, we also summarized the trends for each 

of the three regions (West, South, and East) (Fig. 5). At this regional scale, Trichop-

tera, and Lepidoptera show consistently positive trends, while in the other cases 

the sign and magnitude of the trends were less consistent. For instance, Ephemer-

optera decreased strongly in abundance in the eastern region (WRD & WRIJ), but 

increased in the western WAs (HHD & WHD) (Fig. 5). What is important to keep 

in mind though, is that Ephemeroptera abundance is about five times higher in 

’East’ than in the other two regions (Fig. S9). The decline in the eastern region is 

thus dominating the overall decline shown in Fig. 4. 

A similar spatial pattern is seen for Chironomidae, with strong declines in the 

South and East, but an increase in the West, where abundances were the lowest. 

Heteroptera decreased considerably in West, where it used to be more abundant 

than the other regions, and showed an increase in the South (Fig. S9). Keep in 

mind though that different species and genera could be involved in such spatial 

variation in overall increases and decreases in abundance. Paradoxically, Sim-

FIGURE 3

Trends in total abundance. A: Total insect-macrofauna abundance (pooled over groups 

and WAs) along with 95% confidence intervals over 28 years. B: Average annual percentage 

change per WA.

Figure 3: Trends in total abundance. A: Total insect-macrofauna abundance (pooled over groups
and WAs) along with 95% confidence intervals over 28 years. B: Average annual percentage change
per WA.
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FIGURE 4

Trends in total insect-macrofauna abundance for each of the taxonomic groups. The blue 

dots depicts the mean trend as predicted by the models given default settings. In the bottom 

right average annual changes (percentages) are shown for each of the taxonomic groups. 

Trends per WA can be found in the appendix figures S8 and S9.
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uliidae showed positive trends in each of the three regions, but a negative trend 

overall. For this taxon it is important to notice that the average number of black 

flies (Simuliidae) per macroinvertebrates sample is low, but also highly variable. 

Abundance peaks in samples in the 1990s in some WAs are therefore likely re-

sponsible for inconsistent overall and regional trend estimates.

Among WAs, the increases in Odonata, Trichoptera and Lepidoptera were mostly 

pronounced in WHD and the south-eastern WAs (WPM and WRO; Fig. S8). Marked 

declines in chironomids were observed mainly in WRO, WRIJ, and WRD.

GENUS-LEVEL TRENDS

For 213 insect genera we estimated abundance trends. The rates of increase (i.e., 

the log-transformed per-capita growth rates; ln-lambda) of these genera were in 

majority (140) above 0, indicating positive trends. The median ln-lambda value 

was 0.0314, representing 3% annual growth. Due to the somewhat right-skewed 

distribution (Fig. 6A), the mean ln-lambda is higher than the median: 0.0431. The 

mean ln-lambda is significantly (p<0.001) higher than 0, mainly due to the high 

number of ln-lambda values, while the standard deviation (0.1132) is considerably 

larger than the mean.

Since Chironomidae decreased as a group and had the highest densities per 

sampled meter (Fig. 4), we also looked at the 68 genera within the Chironomidae 

family separately (Fig. 6A). Their mean ln-lambda was lower (0.0218 vs 0.0531; 

t=2.565, P=0.03878) than that of the 145 non-Chironomidae genera. As the mean 

ln-lambda of the Chironomidae genera was positive, indicating that the abun-

dances of individuals had increased in most genera, one might wonder how the 

total abundance of Chironomidae could have decreased strongly (Fig. 4). The 

solution to this apparent paradox is explained in the following paragraph.

We related the genus-level ln-lambda values to the initial abundance of these 

genera, to see if abundant genera had different trends than rare genera (Fig. 6B). 

As a proxy for initial abundance we simply used the sums of all counts of individ-

uals of a genus during the decade (1980-1989) before the start of our study period 

FIGURE 4 

Continued from previous page.
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(1990). As figure 6B shows, there is an overall negative relationship: the regres-

sion line (fitted to the ln-lambda values) decreased significantly with increasing 

log-transformed initial abundance estimates, and was below zero for the 17% 

most abundant genera. The Chirono midae genera showed the same pattern, and 

did not differ from the other genera in that respect. However, the abundance of 

the average Chironomidae genus was significantly higher than that of the other 

genera (t=2.654, p<0.01, based on log-transformed abundance estimates).

This also means that the large, negative contribution of the non-biting midges 

(Chironomidae) to the overall trend in aquatic insect abundance (Fig. 3A), is main-

ly due to negative trends of a considerable number of formerly highly abundant 

genera (e.g. Microsepta, Glyptotendipes and Procladius). This is also true for all insect 

genera combined: even though the median and mean of the abundance trends 

is positive, the overall trend in insect abundance is negative, mainly because the 

most common genera decreased the most, on average. Considerable declines of 

formerly abundant species clearly has a stronger effect on the overall insect trend 

than the net increase of low-abundance genera. 

At the same time, it is good to keep in mind that there might be a slight bias, 

as it is likely that a genus that occurred at low densities in the 1980s and then 

decreased in abundance, did not meet our a-priori thresholds for determining a 

reliable trend, or could have resulted in non-converging models (in which case 

we did not include it in the analyses of the genus-levels trends). This bias could 

have contributed to the on-average positive genus-level trends in genera with low 

initial abundances (i.e., the left side of Fig. 6B). However, the slope of the fitted 

regression line remains significantly negative when genera are omitted with less 

than 200 individuals counted in the 1980s, indicating that the pattern observed 

is not solely a statistical artefact.

The pattern of net declines of abundant genera and net increase of less-abundant 

genera (Fig. 6B) might suggest that the diversity of the macrofauna has increased 

over time. We analyse diversity parameters in the next section.

FIGURE 5

Average percentual increase or decline among ten insect-macrofauna groups for each of the 

three WA groups (different colors). West (W): HHD & WHD, South (S): WAM, WD, WPM & 

WRO, East (E): WRD & WRIJ.
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FIGURE 6

Genus-level abundance trends. A) Histogram of 213 genus-level ln-lambda estimates. Abun-

dance trends above 0 indicate increasing numbers of individuals within a certain genus 

over the years. Reddish color represents 68 genera in the Chironomidae family (i.e., non-bit-

ing midges), bluish color the 145 other insect genera for which we estimated abundance 

trends. B) Relationship between the genus-level ln-lambda values and the abundance of indi-

viduals in these genera in the nineties. Abundance in the period 1980-1989 is simply approxi-

mated by summing all counted individuals recorded in the dataset during that time period. 

The slope of the fitted regression line is highly significant: trend=0.11650-0.01377*ln(abun-

dance), p<0.001. Whether or not a genus belonged to the Chironomidae did not significantly 

affect the slope or intercept of the regression line.
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FIGURE 8

Trends in nutrient concentrations: A Ammonium, B Total phosphorus, C Total nitrogen, and 

D Biochemical oxygen demand. Blue dots indicate the average trend, while the uninterrupt-

ed lines show trends for each WA.

FIGURE 7

Trends in insect-macrofauna diversity. A Average taxonomic richness (i.e., number of genera 

per macroinvertebrate sample). B Shannon index of diversity. C Simpson’s index of diversity. 

D Shannon evenness. B, C and D are also based on abundances per genus. For each index, 

blue lines depict average over the 8 WAs, while the thinner lines show variation in each 

index for each of the WAs. Please note that the number of macrofauna samples was low 

in some WAs in the first few years, resulting in more variation among the WA in the early 

years.
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TRENDS IN DIVERSITY

All four of the calculated diversity indices showed positive trends over the period 

1990 to 2017 (Fig. 7). While variation exists in the trends between the WAs (Fig. 7 

and also Figs S10-S13), overall a consistent pattern emerges of increasing diversity 

of macroinvertebrate insect genera over the duration of the study period. The 

average number of insect genera in the macrofauna samples increased from 13 

to 19 over the 27 years (Fig. 7A). Notwithstanding some fluctuations, taxonomic 

richness continued to increase over the whole period.

The Shannon index of diversity has increased in a similar way as taxonomic 

richness (Fig. 7B). The mean Shannon index of genus diversity was about 1 in 

1990 and 2 in 2017. Please note that this index increases when more genera are 

found as well as when individuals are distributed more equally across the genera. 

Here, both mechanisms are at play: the number of genera has increased and the 

most abundant genera were not as dominant anymore at the end of the study 

period. The latter mechanism also resulted in an increase of the Shannon index 

of evenness, which takes on values between 0 to 1 (Fig. 7D). The Simpson index 

of diversity (Fig. 7C) showed the same patterns as the Shannon index of diversity. 

WA-specific trends in the Shannon an Simpson indices can also be found in figure 

7D, and in more detail in appendix figures S11, S12 and S13.

TRENDS IN DRIVERS

Before we show how environmental variables explained variation in macrofau-

na abundance and trends across sampling locations and over the years, we first 

show how those environmental variables themselves have changed over the years. 

When a variable has a negative effect on macrofauna abundance, it is important 

to know whether that variable has decreased over the years, stayed stable, or 

increased. For instance, if a variable has a negative effect on abundance, but has 

decreased itself over the years, then macrofauna numbers actually go up due to 

the decrease of the variable.

Among the measured nutrients, ammonium, total nitrogen, and total phos-

phorus showed declining trends between 1990 and 2018 (Fig. 8ABC): ammoni-

um and total phosphorus concentrations halved, while total nitrogen levels 

dropped from 4 to 2. There is variation among the WAs (see WA-specific lines 

in figure 8), but all WAs see a decline in these nutrient variables. At the same 

time, the biochemical oxygen demand (BOD) also declined, from about 3 to 2 

(Fig. 8D). This decrease in BOD happened between 1990 and 2005, after which it 

was relatively stable.

Among land use variables, build up areas and forest increased between 1996 

and 2015, while agricultural land (farmland, grassland and greenhouse) cover 

decreased (Fig. 9).

Toxicity in water, as measured by the annual maximum of the multiple-substance 

Potentially Affected Fraction indices (maxPAF-NOEC), showed stable trends over 

time between 1990 and 2018 for combustion compounds, slightly negative trend 

for industrial compounds, and a strongly negative trend for pesticide compounds 

(Fig. 10). Considerable variation existed between the WA-specific trends in these 

maxPAF-NOEC parameters.

EFFECTS OF POTENTIAL DRIVERS ON THE ABUNDANCE OF FRESHWATER INSECTS

Inferred from the global models (i.e., based on data from all eight WAs, separately 

per taxonomic group), covariate effects on the abundance appeared to be variable 

between the different insect groups (Fig. 11). Nevertheless, some general patterns 

could be observed. Among land use covariates, the cover of greenhouses was 

significantly negatively associated with insect abundance across all insect groups, 

except for Lepidoptera and Chironomidae (not significant; see Fig. 13 for effects 

per taxonomic group). The area of arable land near the macrofauna sampling 

points had a significantly negative effect on the abundance of Trichoptera, 

remaining Diptera and remaining insects (Fig. 13), but a significantly positive 

effect in Heteroptera (shown as a deviating point in the bottom row of figure 

11. The amount of forest was generally significantly positively associated with 
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FIGURE 9

Average trends in land use variables between 1996 and 2015, within a radius of 1km centered around each of the monitoring 

locations. Please note the different scales on the y-axes.
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abundance, except for Chironomidae, Coleoptera 

and Lepidoptera (not significant) and Ephemerop-

tera and Heteroptera (significantly negative). Wet 

natural areas had a significantly positive effect 

on the abundance of Heteroptera, Coleoptera, 

Simuliidae, Chironomidae, remaining Diptera, 

and the remaining insect group.

Effects of nutrients (particularly phosphorus- 

and nitrogen-related variables) appeared to be 

consistently and significantly negatively related 

to the abundance of all insect groups, with the 

exception for Chironomidae and Simuliidae (sig-

nificantly positive). However, taxonomic groups 

differed in which variables showed the strongest 

effect: total nitrogen or NO
2
+NO

3
, total phospho-

rus or PO
4
.

Of the three types of pollutants for which we had 

included msPAF-NOEC covariates in the global 

models, pesticides show the most consistent 

pattern (Fig. 13). In eight out of the ten taxonomic 

groups, pesticides had a significant effect on their 

abundance. The two deviating taxa are Chironomi-

dae (no significant effect) and Simuliidae (signifi-

cantly positive effect).

Compared to the other types of variables, weather 

variables showed relatively small effects on abun-

dance. An exception was the growing degree days 

variable (a measure of accumulated heat, here 

above 5oC), which showed significantly positive 
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effects on Odonata, Chironomidae, Lepidoptera, 

remaining Diptera, remaining insects, and espe-

cially on Ephemeroptera. On the other hand, high-

er GDD (Growing Degree Days) strongly decreased 

the abundance of Coleoptera.

Similar models for the three groups (East, South, 

West) of WAs, showed variation in effect sizes 

among the regions (Fig. 12). For instance, the nega-

tive effect of greenhouses was especially found for 

the West, while pesticides, nitrogen and phospho-

rus had consistently negative effects especially in 

the South and West.

EFFECTS OF POTENTIAL DRIVERS ON THE 

TRENDS OF MACROINVERTEBRATE INSECTS

Besides the abundance responses of taxonomic 

groups to variation in the considered potential 

drivers, we also studied how the abundance 

trends responded to the mean annual change 

in the values of each potential driver over the 

1990-2017 period (Fig. 13). In these analyses we 

quantified how much the various environmen-

tal changes contributed to the trend coeffi-

cient according to our global models. With the 

exception of Odonata, Trichoptera and Heter-

optera, the largest contribution to the average 

annual trend was provided by unknown factors. 

Otherwise, the most consistent contributions to 

the abundance trends are made by the decline in 

pesticides and by the decline in several nutrient 

concentrations. 

FIGURE 10

Trends in toxic pressure of mixtures between 1990 and 2018. A Annual maximum of the Potentially Affected Fraction based on 

pesticide compounds (maxPAF-NOEC/pesticide). B Annual maximum of the Potentially Affected Fraction based on industrial 

compounds (maxPAFNOEC/industrial). C Annual maximum of the Potentially Affected Fraction based on combustion com-

pounds (maxPAF-NOEC/combustion). Blue lines with dots represent the overall average, while the other lines show the trends per 

Water Authority (WA). The number of tested substances per water sample are taken into account.
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The decline in toxic pressure due to pesticides, as quantified by the negative trend 

in msPAF-NOEC values over the study period, had considerably positive effects 

on the abundance trend of eight of the ten insect groups. On the other hand, 

the decline in toxicity due to pesticides had a considerably negative effect on the 

abundance trend of Simuliidae (mainly occurring in streams), and a small negative 

effect on the trend of Chironomidae (occurring in a variety of water types).

Changes in mean concentrations of the various nutrients provided, together, the 

largest contribution to the average annual trends. Generally, changes in nutrient 

concentrations (mainly declining nutrient loads over the study period) had positive 

effects on the average trends of all taxonomic groups except Chironomidae and 

Simuliidae. For instance, the decline in total phosphorus (’Sum P’) had a relative-

ly large, positive effect on the abundance trend of Trichoptera. For Odonata, the 

decline in the nitrogen sum had a positive effect on abundance. The changes in 

nutrient concentrations also showed mixed effects on the trends of the taxonomic 

groups, with small positive and small negative effects partially compensating each 

other. For instance, in Ephemeroptera a dominant positive effect of the declining 

phosphorus sum is partly buffered by a smaller negative effect of the decrease in 

phosphate. Decreasing nutrient concentrations had net negative effects on the 

trends of Simuliidae and Chironomidae.

Changes in weather variables did not appear to contribute consistently to the trends 

of any of the insect groups. A few exceptions include a strongly positive contribution 

on the Simuliidae trend by the increase over time of the precipitation in the previ-

ous summer. The positive trend in the mean temperature in the month preceding 

a macroinvertebrate sample, had a positive effect on the trend of the ’remaining 

insects’ group. Changes in land use parameter hardly contributed to the abundance 

trends. Changes in heavy metal concentrations generally had relatively small effects.

TREND-TRAIT RELATIONSHIPS

Of 213 genera for which we were able to derive abundance trends, 125 also oc-

curred in the trait database of Tachet et al. (2010). For 33 of remaining genera a 

FIGURE 11

Back-transformed effects (z-scores) of covariate values on insect abundances. Effects are sum-

marized over the ten taxonomic insect groups. Horizontal boxes therefore show the variation 

of effect sizes among the taxonomic groups, based on the global models (i.e., based on data of 

all eight WAs).
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link could be made at the tribe level, for 40 at the 

subfamily level, for 14 at the family level and for 1 

genus a link could only be made at the infraorder 

level. However, for the trend-trait analyses shown in 

figures 14, 15 and 16 we only used the subset of 125 

genera for which both abundance trends and trait 

information were available.

The genus-level abundance trends (ln-lambda) were 

related to some of the traits considered, but certain-

ly not to all. Please keep in mind that we conserv-

atively included insect order as a random factor in 

our analyses to account for potential phylogenetic 

patterns. 

One of the traits that did show statistically sig-

nificant effects in the fitted linear mixed-effect 

models was the preferred substrate that species 

in a genus normally have. Genera with high fuzzy 

scores for the categories cobbles/pebbles, gravel, 

and sand had abundance trends that were signifi-

cantly above average (Fig. 14A). Genera preferring 

sludge and macrophytes, on the other hand, per-

formed below average, which is consistent with 

the reduced nutrient load that was observed in 

the studied water bodies in the period 1990-2017. 

The trait locomotion showed interesting relation-

ships with the abundance trends (Fig. 14B), with 

genera with full-water swimmers performing 

below average. It might well be that this pattern 

is related to changes in the species compositions in 

lakes and rivers.

FIGURE 12

Back-transformed effects (z-scores) of covariate values on insect abundances. Effects are summarized over the ten taxonomic 

insect groups, separately for each of the three groups of Waterboard Authorities (A: East, B: South, C: West).
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FIGURE 13

Effects of changes in covariate values on the abundance change of each of the ten taxonomic 

insect groups (see also the next two pages). Yellow arrows indicate the direction and relative 

magnitude of the change in each of the covariates from 1990 to 2018. The black bars then 

quantify the effect of that covariate change on the change in abundance. The blue interrupt-

ed line signals the sum of the black bars. Units are on the log-λscale. In this graph the results 

of the 8 WAs are combined, unweighted by the relative abundances of insect groups in the 

separate WAs.
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Genera with oligotrophic species increased in 

abundance (but not significantly so), while those 

with eutrophic species decreased (Fig. 14C). Again, 

this clearly is in line with reduced nutrient load 

over the study period.

The next three traits, current velocity, transversal 

and longitudinal distribution show related results 

(Fig. 14DEF). Genera associated with high fuzzy 

scores for respectively standing waters, lakes, 

and outside river system tended to have lower 

abundance trends. On the other hand, genera 

associated with slow and medium current 

velocity had significantly higher than average 

abundance trends, which is in agreement with 

the positive tendencies of the genera asso-

ciated with river channels. It could well be 

that this pattern is related to improved oxygen 

availability.

Genera of which the adult stage lives in water 

performed significantly below average (Fig. 15A). 

The same is true for deposit feeders, while filter 

feeders had significantly higher than average 

abundance trends (Fig. 15C). Longer-lived species 

performed worse than shorter-lived species (Fig. 

15E). Most of the other traits in the Tachet et al. 

(2010) database did not show significant relation-

ships with the abundance trends (Figs. 15 and 16). 

For instance, genus-level abundance trends were 

not explained by the preferred temperature range 

of the genera (Fig. 16H). 

Unknown
Arable

Greenhouses
rem. agric.

built−up
forest

dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Heteroptera

−1.0 0.0 1.0

Weather

Toxicity

Psysical/Chemical properties

Land use

Unknown Unknown
Arable

Greenhouses
rem. agric.

built−up
forest

dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Lepidoptera

−1.0 0.0 1.0

Weather

Toxicity

Psysical/Chemical properties

Land use

Unknown

FIGURE 13

Continued from previous page.

We could not analyse potential effects of the 

trait preferred salinity in the same way. In the 

Tachet trait database salinity has two categories: 

fresh water and brackish water. Not surprisingly 

all genera found in the macrofauna samples of 

the WAs had high scores for fresh water. As only 

one category (brackish water) with variable fuzzy 

scores remained, we could not perform the same 

fuzzy principal component analyses as for the oth-

er traits in the Tachet et al. (2010) database. When 

regressing the genus-level rates of increase against 

the fuzzy scores for brackish water directly, a 

nearly-significant negative effect was found (ln-

Lambda=0.0412-.0183*scoreBrackishWater; p-value 

of the slope=0.063), indicated that genera that are 

not only found in fresh water but also in brackish 

waters performed somewhat worse than genera 

affiliated with fresh water only.

The risk level derived from the SPEARpesticides 

database (Liess and Von Der Ohe 2005) did not 

explain variation in the genus-level rates of in-

crease (Fig. 17A). The rate of increase did not differ 

(p=0.141) between the 26 genera at risk (mean 

ln-lambda=0.048) and the 175 genera not at risk 

(ln-lambda=0.041). Please note that there were also 

12 genera for which we had an abundance trend 

but could not determine the risk level.

Analyses of the effects of the dominant KRW 

indicator scores per genera (van der Molen et al. 

2018), roughly showed the same patterns for river 
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systems and lake systems: genera indicating healthy rivers and lakes increased 

on average, while negative indicators declined in abundance. In the case of river 

indicators, most genera were classified as ’K’ (more than 75% of indicator scores 

being a characteristic taxon; n=96) or 0 (no indicator scores or none of the P, K or 

N scores having a majority; n=100).

The KRW lake indicator scores showed a somewhat similar but not significant 

pattern: lower rates of increase for the 9 ’N’ genera (i.e., when these genera occur 

at high abundance they are negative indicators of desired lake ecosystems) than 

of the 110 ’0’ genera (Fig. 17C). Those 9 ’N’ genera were, in alphabetical order: 

Aedes, Anopheles, Callicorixa, Chironomus, Culex, Culiseta, Procladius, Psectrotanypus, and 

Tanypus. Please keep in mind that we derived the abundance trends based on the 

entire macrofauna dataset, not separately for e.g. lake and river systems. That 

would have made the link with the KRW indicators more direct, but would have 

also meant smaller datasets and less-certain trend analyses for fewer genera.
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Water strider - Gerris lateralis - rossige schaatsenrijder
Photo: Bureau Biota
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Our goal was to uncover how aquatic insect 

abundance has developed in the Netherlands 

over the past three decades, making use of the 

extensive datasets on aquatic stages of insects 

sampled by Dutch Water Authorities (WAs). 

Overall, insect abundance (expressed as densi-

ties) declined by approximately 53% over 27 years 

(from 1990 till 2017), which corresponds to a 2.7% 

decline per year, on average. However, trends 

differed considerably between and within insect 

orders. Declines were strongest in the most 

abundant orders and families (Heteroptera [typ-

ical bugs; wantsen], Chironomidae [non-biting 

midges; dansmuggen], other Diptera [other flies; 

andere muggen en vliegen]) and Ephemeroptera 

[mayflies; haften; especially the abundant Cloeon 

and Caenis genera], while trends in other insect 

orders varied from small decreases (e.g. Coleop-

tera [beetles; kevers]) to increases (e.g. Trichop-

tera [caddisflies; kokerjuffers/schietmotten] and 

Odonata [dragonflies and damselflies; libellen]). 

Trends also varied across WAs, indicating that 

regional differences in abiotic conditions and 

temporal changes therein likely matter.

48 

DISCUSSION

Common backswimmer - Notonecta glauca - gewoon bootsmannetje
Photo: Bureau Biota
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The second objective of our study was to relate trends to potential drivers (chang-

es in abiotic conditions) as well as relate trends of insect taxa to their traits. The 

combined toxicity of the observed pesticide concentrations dropped markedly 

over the study period. Similarly, nitrogen and phosphorus concentrations, which 

had strongly negative effects on most insect groups, halved during the study 

period, thus contributing positively to the abundance trends of these groups. 

On the other hand, the most abundant Chironomidae genera benefited signif-

icantly from eutrophic conditions, and consequently declined strongly. These 

patterns are also reflected by some of the traits of the genera for which we were 

able to determine trends: aquatic insects preferring sand, gravel, cobblestones or 

pebbles performed much better than those preferring sludge or macrophytes as 

a substrate to live in. And probably related to this: taxa preferring flowing water 

performed better than those preferring standing water. Indeed, filter feeders per-

formed better than deposit feeders. The improvements in water quality are also 

reflected in the finding that taxa characteristic of healthy river and lake commu-

nities increased in abundance, while taxa that are negative indicators of healthy 

river and lake communities declined in abundance.

While total insect abundance declined, diversity in insect genera increased. 

The overall increase in diversity indices reflects both an increase in numbers of 

genera (higher richness) and a higher evenness, due to the decline in the abun-

dance of individuals of the most abundant genera. It would certainly have been 

interesting to calculate and study species-level diversity, but we feel that that was 

not possible in general, as too many caught individuals were identified at only a 

taxonomic level higher than the species level. Furthermore, identification tools 

and expertise may have increased in the first decade of the study period, leading 

to more individuals being identified at the species level over time (from 65% to 

70% of the sampled individuals).

It would also have been interesting to compare current diversity levels with those 

in undisturbed water bodies in the past (e.g. first half of the 20th century) or 

elsewhere within the same ecoregion, e.g. less disturbed streams in Germany, 

Sweden or Eastern Europe. However, such comparisons suffer from confound-

ing differences in sampling methods and from the fact that many of the rare 

species found elsewhere do not occur in The Netherlands (Nijboer et al. 2004). In 

the current study we started our analyses with the starting year 1990, because 

sampling methods were much less consistent before that time. While these 

trends of improved water quality and increase of characteristic species is hope-

ful it is difficult to gauge how complete the current recovery is without proper 

data on reference community compositions prior to the strongly eutrophic and 

polluted water conditions of the second half of the previous century. It is possible 

that aquatic insect communities are steadily recovering towards historic levels, 

but it is also possible that recovery remains incomplete and stabilizes at a state 

impoverished relative to historic levels (but enriched relative to the situation in 

the 1980s). In other words, we have to keep in mind that we might be affected by 

shifting baselines (Soga and Gaston 2018; Didham et al. 2020) when interpreting 

these patterns of increasing biodiversity over a time period that started in a time 

with many disturbances.

WHAT CAUSED INSECT ABUNDANCE TO BE HALVED AND DIVERSITY TO INCREASE?

In their review paper, Jactel et al. (2020) expect land use change, pollution, 

climate change, invasive alien species, and interactions between these factors to 

be among the most likely causes of recent insect declines. Of the different sets of 

explanatory variables in our analyses, land use variables, pesticide and nutrients 

were generally the strongest explanatory variables to explain local insect abun-

dance. Effects of land use included consistently negative effects of greenhouses 

on the abundance of ten taxonomic groups considered, mainly in the western 

WAs, where many greenhouse complexes are present. However, as only marginal 

changes in these variables occurred over the past three decades, changes in land 

use variables contributed little to the overall trend of insect groups. We have to 

acknowledge, however, that our analyses looked at relative changes in the area 

cover of land-use types, meaning that subtle changes like the disappearance of 

important small landscape elements like single trees at the water edge are not 

picked up.
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Contrary to the lack of effect of land use changes, the overall declining trends 

in nutrient concentrations over time most consistently explained, statistically, 

temporal trends in the abundance of macrofauna insects, with positive effects 

on most species (but negative on the dominant Chironomidae), which ultimate-

ly resulted in increases in diversity indices over time. The found halving of the 

nitrogen and phosphorus concentrations is in line with calculations by Deltares, 

which show predominantly downward trends since 2010 in areas dominated 

by agriculture (Buijs et al. 2020a). Sewage water and poorly-functioning sewage 

sanitation systems used to cause high nutrient levels, as well as high organic load 

which causes oxygen shortage and sludge layers. It was probably this combina-

tion of nutrients and organic load that provided food for large densities of taxa 

preferring eutrophic conditions. While water quality has improved, in 2019, ni-

trogen levels were still higher than the system-specific water quality norm at 48% 

of the sampled locations, while phosphorus concentrations were still too high at 

40% of the sampled locations (Buijs 2020).

In 81% of water samples from German lowland streams in agricultural areas (in 

2018 and 2019) some pesticide concentrations exceeded regulatory acceptable 

concentrations (Liess et al. 2021). In the Netherlands, the proportion of cases 

where pesticide concentrations were found to be above their maximally allowed 

concentrations has decreased gradually in recent years (2014-2019) (Buijs et al. 

2020b). Similar to the positive effects of the halving of the nitrogen and phos-

phorus concentrations, the decline in the toxicity of pesticides over the three 

decades of our study also improved the abundance trends of most of the insect 

groups, except for the groups indicative of eutrophic and polluted waters. Over 

those three decades new pesticides have been introduced in agricultural practice 

and domestic use (e.g. neonicotinoids), while other types of pesticides have been 

partly phased out. Given the patchy nature of the dataset on micropollutants (in-

cluding pesticides), with different sets of substances being measured in different 

water quality samples, we found that it was not feasible to interpolate pesticide 

concentrations or their toxicity to the day of sampling, as we did do for the 

more standardly measured variables of water chemistry. Instead we used annual 

maxima of indices of the combined toxicity of multiple substances. However, 

using annual maxima of toxicity is preferential from ecotoxicological theory: 

peak toxicity (together with the duration and frequency of peaks) is expected to 

have lasting effects throughout the season. Using annual maxima is then a better 

proxy of ecotoxicological effects than daily measurements, as measured pesticide 

concentrations tend to fluctuate strongly over time: pesticide exposure tends to 

occur in ephemeral peaks (e.g. after rainfall resulting in run-off).

For most locations where macro-invertebrates were sampled, micropollutants 

were measured as well. However, for about one quarter of the locations we had 

to spatially interpolate the year-specific maximum-msPAF values. While this 

means that there is more uncertainty in those interpolated values than in the 

maximum-msPAF values that were measured at the same locations, we believe 

that that uncertainty is fairly small. Furthermore, we can argue that, if includ-

ing these locations with interpolated maximum msPAF values had any effect, it 

would most likely result in more conservative conclusions: uncertainty in the 

values of an explanatory variable leads to weaker effect sizes. Ways to check this 

in future research is to also perform the analyses on the data from the locations 

where macro-invertebrate and micropollutant measurements intersected, or to 

gradually limit the addition of the remaining locations based on their proximity 

to the nearest location of micropollutant sampling. Despite the many abiotic 

conditions considered, we could not include all factors. For instance, manage-

ment operations by the Waterboard Authorities (e.g. dredging and mowing), or 

local vege tation characteristics, are known to affect the abundance of the various 

insect species as well (Higler and Verdonschot 1989; Fairchild et al. 2003; Verberk 

et al. 2005; Verberk and Esselink 2007), but since proper data of the execution of 

these operations across the three decades of our study is lacking we could not 

include them in the analysis.
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FIGURE 14

Relationship between genus-level abundance trends and various traits of those genera. 

Depicted here are the redistributed t-values of the linear-mixed effect models in which each 

of the traits was included one at a time. 

Black bars indicate significant relationships (t-value > 1.96). The direction of the bars (pos-

itive or negative) depends on the sign of correlation between the trends and the genus-level 

scores for each trait category.
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FIGURE 15

Relationship between genus-level abundance trends and various traits of those genera. 

Depicted here are the redistributed t-values of the linear-mixed effect models in which each 

of the traits was included one at a time. 	

Black bars indicate significant relationships (t-value > 1.96). The direction of the bars (pos-

itive or negative) depends on the sign of correlation between the trends and the genus-level 

scores for each trait category.
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COMPARISON WITH AQUATIC AND TERRESTRIAL INSECT TRENDS ELSEWHERE

A recent meta-analysis (van Klink et al. 2020b) showed that while both rare and 

common taxa of terrestrial insects are declining in abundance conform earlier 

reports (Dirzo et al. 2014; Hallmann et al. 2017; Seibold et al. 2019), freshwater 

insects appeared to be on the rise in recent decades, likely recovering from low 

numbers related to strong pollution in the second half of the 20th century (Du-

rance and Ormerod 2009). However, the selection of datasets going into this me-

ta-analysis has recently been questioned: both their spatial coverage (Desquilbet 

et al. 2020; van Klink et al. 2020a) as their suitability for detecting trends (several 

monitoring schemes started after a major disturbances) (Jähnig et al. 2021; van 

Klink et al. 2021). In our analysis, we did find similar patterns of increase for some 

aquatic insect groups: Trichoptera and Odonata, for instance, increased over time 

as water conditions became less eutrophic and polluted, which are indications 

of improving water quality. The estimated trends for Odonata are consistent with 

published trends based on entirely independent data (Termaat et al. 2015), while 

for Trichoptera, the only published reference (Hallmann et al. 2019) showed op-

posed (declining) rates. However, the insect orders that contribute most to overall 

insect abundance (Ephemeroptera, Diptera (especially Chironomidae)) showed 

strong declines, leading to an overall 53% decline over 27 years. The decline in 

the total number of individuals of Ephemeroptera might be surprising, as this 

insect order is generally seen as an indicator of good water quality. Six of the ten 

Ephemeroptera-genera for which we calculated abundance trends increased in 

abundance. But the three most abundant Ephemeroptera genera (Cloeon, Baetis 

and Caenis), which contained more than 95% of the Ephemeroptera individuals, 

decreased in abundance. The most abundant species in those genera are more 

tolerant to poor water quality than other mayfly species. So, in spite of the 

abundance decline of all aquatic insects combined, richness and other diversity 

indices such as community evenness showed increases over time. Higher richness 

and diversity most likely reflect a combination of a) diminishing dominance of 

genera tolerant to high nutrient loads, and b) recovery of some genera indicative 

of improved water quality. In that respect our results on aquatic insect trends 

differ from recent findings from a terrestrial hoverfly community. Hallmann 

et al. (2021) found that while total insect biomass decreased by three quarters, 

species richness (accumulated over a season) decreased by 23% from 1989 to 2014, 

and even 82% on a daily basis. Clearly these synchronous declines in biomass, 

abundance and species richness in terrestrial habitats, contrast strongly with our 

current findings of decreasing abundance linked to increasing species richness 

and diversity. The combination of strongly eutrophic and polluted starting con-

ditions and improving water quality during the study have resulted in this more 

promising development.

LIMNODATA NEERLANDICA: 

OPPORTUNITIES, LIMITATIONS AND RECOMMENDATIONS

After working with the data from the insect macro-invertebrate samples of the 

Water Authorities, we have several recommendations for improving existing 

datasets and future data. But first of all, we have to stress that these datasets 

constitute a wealth of data, providing a spatially dense and historically highly 

relevant coverage of how insect communities have developed in recent decades. 

The combined dataset on the abundance of aquatic insects allows for large-

scale assessments of the effects of both environmental threats and conservation 

measures. At the same time, it is clear that there are important challenges with 

the current datasets. We have dealt with previously identified inconsistencies in 

the recorded abundances and metadata (Netten et al. 2010; Verdonschot and van 

Oosten-Siedlecka 2010) by selecting data from a third of the Dutch WAs for which 

datasets were sufficiently well-organized and accompanied with necessary meta-

data (Koese and Zeegers 2018). Furthermore, in our analyses we accounted for 

the ’noise’ caused by methodological differences across WAs, field workers who 

collected the samples, and the length of the sampled transect.

The eight WAs were selected based on how organized their data already were. It 

is likely that parts of the data of other WAs can also meet the criteria for trend 

analysis, requiring, however, that the original data sources are accessed to make 

the metadata as complete as possible. Information on who collected the sample, 

how many meters were sampled and in which microhabitats, and how the sample 



54 

was processed, might still be available in the original forms and note books. 

In our analyses we accounted for the identity of the main person collecting a 

particular macrofauna sample in the field. Still, some difficulty arose, e.g. in the 

WPM data, where the team of field workers changed over the course of only a few 

years. Therefore, we cannot fully rule out that the deviating trend (WPM is the 

only WA with a positive trend) represents a true increase in total insect abun-

dance, or partly also changing practices in the field.

The macrofauna monitoring scheme of the Dutch Water Authorities is accom-

panied by a clear sampling, processing and estimation protocol (Beers et al. 

2014). Over the selected time period (1990-2018) and for the selected parts of the 

datasets of the eight WAs that were included in this study, the methods were con-

sistent enough to analyse trends in individual abundance, species richness and 

diversity. Still, we believe that future analyses would highly benefit from further 

standardization of all aspects of sampling aquatic macro-invertebrates, process-

ing the samples, and recording information about both the process (metadata) 

and the taxon-specific counts. To improve future analyses we therefore like to 

present to following recommendations:

•	 Continue to train field workers to collect macrofauna samples according to 

the protocol in a nationally coordinated course.

•	 Field workers should minutely document who took the sample, how many 

meters were sampled in total, how many meters in which microhabitat, 

concurrent water level, development stage of the vegetation, and other 

relevant aspects of the sampling conditions.

•	 Ideally water quality samples are collected at the same location and at the 

same time as the macro-invertebrate sample.

•	 While it might be important to retain flexibility with respect to new sampling 

locations, the importance of repeat-samples of aquatic insects on exactly the 

same location must also be stressed.

•	 Information about macroinvertebrate sample processing in the field should 

also be recorded.

•	 Key aspects of water and shore vegetation management should be recorded 

for the location and time of the macroinvertebrate samples. Ideally data on 

mowing frequencies and dates, dredging, etc. are recorded systematically for 

all (stretches of) water bodies. Pending such information system, management 

metadata should be recorded alongside each macroinvertebrate sample.

•	 In the lab, metadata about the processing of the samples is required as well: 

who (individual, not just a company name) processed the sample, how much 

time was spend on processing the sample and whether that restricted the 

identification process.

•	 As not only the level and field of expertise differs between people processing 

the samples, but also between the resources available to them to identify taxa, 

it would be useful to record which identification keys were available.

•	 If not all individuals in a sample are taxonomically identified and/or not all 

individuals are counted, the estimation and extrapolation process should 

be described in detail, allowing full reconstruction. Actually counted and 

additionally extrapolated numbers should be recorded separately.

•	 Database structures for organizing and collating the macrofauna data should 

not be hampering the documentation of metadata (e.g., due to restrictive 

data entry portals), but rather enable and steer proper documentation of all 

relevant aspects of the collection and processing of the macrofauna samples.

•	 It is also advisable to consider conserving and storing the actual samples in 

a standardised and coordinated way. That would allow checks of potential 

errors, revisiting samples in the future when new taxonomic insights 

could lead to different identifications, or future research on specific taxa or 

communities. A central, well-organized and accessible database of where these 

samples are is then a requirement, of course.

In addition to these recommendations for improving the quality and usefulness 

(value) of the macro-invertebrate sampling scheme of the WAs, we also want to 

briefly discuss alternatives. For instance, taxonomic sorting based on metabar-

coding (Beentjes et al. 2019), environmental DNA (eDNA) (Goldberg et al. 2016; 

Valentini et al. 2016; van Bochove et al. 2020) or automated photography and 

image recognition (Hogeweg et al. 2019; Høye et al. 2021) might be suggested to 
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FIGURE 16

Relationship between genus-level abundance trends and various traits of those genera. 

Depicted here are the redistributed t-values of the linear-mixed effect models in which each 

of the traits was included one at a time. 

None of the trait categories had a significant t-value (< 1.96). The direction of the bars (pos-

itive or negative) depends on the sign of correlation between the trends and the genus-level 

scores for each trait category.
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FIGURE 17

The abundance trend (rate of increase; ln-lambda) of genera as a function of certain traits: 

A. whether or not the species in a genus are at risk for the effects of micropollutants (n=26 

and 175 genera, respectively), and indicator classes for rivers (B) and lakes (C). The indica-

tor classes are: N (species in a genus are mainly negative indicators of typical river or lake 

systems), K (species in a genus are mainly characteristic taxa), P (mainly positive indicators 

when dominant), and 0 (genera with no indicator species or with a mixed bag of N, K and 

P). The black bars in B and C signal significant effects compared to the 0 class.
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augment or even replace the current methodology of collecting aquatic insects 

from water bodies in the near future. While the technological possibilities are 

growing rapidly, the key aspect to evaluate these on is whether they can produce 

the same data as the current methods: counts per separate taxa. Translating 

metabarcoding data and eDNA samples to the number of individuals present is 

not (yet) straightforward (Beentjes et al. 2018). Even when new methods would 

produce reliable estimates of densities, very thorough, habitat-specific calibration 

would be needed to relate estimates of new and existing methods. As the value of 

the macroinvertebrate data of the WAs grows with the years in which the same 

protocol is followed, it is advisable to be very careful about changes in methodol-

ogy, and when in doubt, to stick with the existing method with standard macro-

fauna-nets.

TOPICS FOR FUTURE RESEARCH

In this report we focus on the abundance and diversity trends of all aquatic insects 

found in the macro-invertebrate samples of the Dutch Water Authorities. For the 

abundance analyses we mainly focused on higher taxonomic levels in order to in-

clude all insects found. Already when analysing trends and trait-trend relationships 

at the genus level where we forced to leave out some of the counted individuals, be-

cause they were identified at a higher taxonomic level only, or because no reliable 

trends could be estimated for the genera due to lack of data. The diversity indices 

were calculated at the genus level. Estimating trends and trait-trend relationships 

at the species levels would have meant an even further subsetting of the data, and 

fell outside the scope of the research documented in this report.

There are good evidence- and hypothesis-driven reasons, however, to want to 

perform trait-trend analyses for subsets of genera or species in follow-up studies. 

For instance, one could imagine that whether or not the decline of genera is 

related to nutrient reductions is related to traits such as feeding on algae. Or that 

insects hunting by sight have different abundance trends than those that can 

rely on touch and do not require clear water. This kind of analysis, where trends 

are related to explanatory variables and traits can provide a lot of insight in the 

causality of the patterns found in this study.

Particular research questions and hypotheses which could be addressed in fol-

low-up analyses include, amongst many others, and in no particular order:

•	 What are the relative contributions of terrestrial and aquatic environmental 

factors to long-term trends of various taxa?

•	 How much improvement in measures (e.g. species richness, evenness, Shannon 

index) of aquatic insect diversity is achievable, given assessments of natural/

pristine aquatic communities?

•	 Is insect diversity higher in water bodies managed as nature reserves compared 

to other water bodies?

•	 Do wet nature reserves have a positive effect on insect diversity in surrounding, 

regular water bodies?

•	 Do algivores decline in those sites where nutrients have reduced and where 

there is not much forest cover?

•	 Are the negative trends in Simuliidae linked to positive trends of their 

predators (e.g. hydropsychid caddisflies)?

•	 Can it be shown that short-lived taxa respond stronger to the reduced nutrient 

concentrations than long-lived taxa? This would indicate that short-lived taxa 

no longer profit from a larger food base, or in the case of oxygen instead of 

nutrients: indicating that long-lived taxa are profiting from higher oxygen 

levels. Another hypothesis is that short-lived species can recover more quickly 

from disturbances like strong drops in oxygen availability and vegetation 

management, which are more frequent in nutrient-rich conditions.

•	 Are water quality improvements (nutrients, oxygen, pesticides), similar for 

isolated, standing water sites and connected, running water sites?

•	 One interesting comparison here could be to compare trends in running and 

standing waters: do we also see a decline of full-water swimmers in lake sites? 

Or is the pattern seen here driven by improvements in river habitats making 

them less suitable for lake specialists?

•	 Analyse the effects of greenhouses on abundances of species at risk, and 

compare them with the effect size of greenhouses for abundances of species 

not at risk?
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•	 Are there interactive effects between oxygen parameters and temperature?

•	 How much of the increase in diversity is due to the found increase in species 

richness, and how much due to the increased evenness? One thing which may 

be informative is to calculate the expected shannon index if all individuals 

would be equally distributed across the species found. The difference 

between this max index and the observed index indicates the effect of 

skewed distribution and likely diminishes over time, indicating that as time 

progresses, diversity increases more and more because of species additions 

rather than increases in evenness.

•	 Can the observation of concurring decreases in nutrient concentrations and 

shift from shorter-lived to more longer-lived genera be explained solely by 

direct effects of food availability, or also through indirect effects of predators? 

It could well be that longer-lived predators are more sensitive to episodic 

conditions of poor water quality. Analysing patterns per feeding guild could 

perhaps shed light on this.

•	 Do species differ in their response to pesticides, and can those differences be 

related to traits determining how much they are in direct contact with these 

substances? Moths have a waxy cuticle and may therefore have a layer of air 

surrounding their body making them less prone to suffer effects of pesticides 

associated with greenhouses. One other group which are not in direct contact 

with water are true bugs (Hemiptera) that dwell at the water surface (e.g., 

Gerridae and Velidae). Beetles and heteropterans may be less prone to effects of 

pesticides but this only applies to the adult stage with sclerotized body parts; 

the situation is different for their juvenile stages (but not for the surface-

dwelling true bugs, making this an interesting subgroup to look into).

•	 Ephemeroptera are particularly sensitive to salt, so although as a group we see 

a decline in abundance, individual genera may show positive trends, especially 

where salinity decreased?

CONCLUSIONS

We conclude that water quality improvements since 1990 (e.g. diminished nu-

trient concentrations and pesticide toxicity) in the Netherlands have positively 

affected insect-macrofauna communities so far. The most abundant groups, that 

were tolerant to high-nutrient conditions, have declined, while some indicator 

groups of healthy communities have increased in abundance. Trends in insect 

groups are, however, not fully explained by changing nutrient concentrations 

and toxicity of pesticides, but are explained to a considerable extent by unknown 

factors, not included in our analyses.

It is encouraging to see that the efforts of the WAs and other actors to improve 

water quality have had clear positive effects on the richness and diversity of 

water insects. However, given the abysmal water quality in the 1970s and 1980s, 

the conditions at the start of our study period should not be used as a baseline. 

Thus, the improvements observed reflect recoveries from a severely impover-

ished state regarding water quality. We therefore emphasize the need for taking 

further steps to assure the conservation and recovery of freshwater biodiversity. 

Follow-up research will have to show in which direction the composition of insect 

communities is developing and how WAs can steer that development in the de-

sired direction. Our results therefore emphasize the importance of continuing to 

take conservation measures to maintain and restore aquatic biodiversity, and to 

standardize the sampling of insect macrofauna even more.
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Caddisfly - Adicella reducta - kokerjuffer
Photo: Bureau Biota
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We interpolated weather data from up to 49 weather stations to macrofauna 

monitoring locations for each particular sampling day and location. We consid-

ered temperature, precipitations and evapotranspiration. From the interpolated 

temperature variables we also extracted the average weekly and average monthly 

temperature prior to each sampling event, the growing degree-days (GDD: at 5oC). 

We decomposed each weather variable in a mean annual smooth trend, a mean 

smooth spatial trend, and a mean seasonal trend (see Supplementary Figure S2), 

using Generalized Additive Models assuming Gaussian errors. Using the residuals 

of the models, we derived the daily mean anomaly over all weather stations, and 

subtracted it from the model residuals, i.e. leaving only between-station daily 

spatial variation. From these residuals we calculated average daily-semivariance 

(γs) for spatial lags up to 300 km, and modelled these using an exponential vario-

gram model:

(S.1)

where S is the model sill and α the steepness at which the semivariance reaches 

the sill over spatial lag D (See Supplementary Figure S3). 

To interpolate to macrofauna locations (z), for a particular day (t), we predicted 

the means using each GAM-model (µ
z,t

), added the daily average residuals (rˆ
t
), and 

finally interpolated the spatial residuals (r
z
):

 

(S.2)

 

where C
0
 is the covariance matrix between weather stations, and C

1
 the covar-

iance matrix between weather and macrofauna locations. Both of these were 

obtained by

(S.3) 

where D
i,j
 is the pairwise distance between two locations z

i
 and z

j
.
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all weather stations, and subtracted it from the model residuals, i.e. leaving only between-station

daily spatial variation. From these residuals we calculated average daily-semivariance (γs) for spatial

lags up to 300 km, and modelled these using an exponential variogram model:

γs = S × e−α∗D (S.1)

where S is the model sill and α the steepness at which the semivariance reaches the sill over spatial

lag D (See Supplementary Figure S3). To interpolate to macrofauna locations (z), for a particular

day (t), we predicted the means using each GAM-model (µz,t), added the daily average residuals (r̂t),

and finally interpolated the spatial residuals (rz):

ŷz,t = µz,t + r̂t +C1C
−1
0 rz (S.2)
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where C0 is the covariance matrix between weather stations, and C1 the covariance matrix between

weather and macrofauna locations. Both of these were obtained by

Cov(zi, zj) = S − S × e−α∗Di,j (S.3)

where Di,j is the pairwise distance between two locations zi and zj.

Appendix B: Spatio-temporal estimation and interpolation of chemical

water properties

Each of the Water Authorities (WAs) have collected measurements of chemical and physical water

characteristics, covering 22 substances between 1990 and 2018 (see table 3). Approximately two thirds

of the macrofauna monitoring locations overlap spatially with water quality measurement locations,

but the two monitoring schemes rarely coincide in time. As such, we rely on modelling of the chemical

and physical characteristics of water bodies, and deriving statistical predictions of water quality at

the macrofauna locations and time of sampling. We used generalized additive models with Gaussian

errors, where the (log of the) measured concentrations of each compound are modelled as a function

of for example temporal (daily and yearly splines), spatial (nonlinear x- and y-coordinates, as well as

a random effect for catchment area; see equation 5 in main text).

An important aspect in the measurements of physical/chemical properties of the water, are the

detection limits. Detection limits prohibit straightforward modelling, as they pose a left-truncated

variable problem (e.g. below a given detection limit are essentially). Data that are above the limit

provide robust information, while water-concentrations below the limit are left-censored: any positive

value below detection limit is theoretically possible, but is essentially unobserved. Detection limits
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Each of the Water Authorities (WAs) have collected measurements of chemical 

and physical water characteristics, covering 22 substances between 1990 and 2018 

(see table 3). Approximately two thirds of the macrofauna monitoring locations 

overlap spatially with water quality measurement locations, but the two mon-

itoring schemes rarely coincide in time. As such, we rely on modelling of the 

chemical and physical characteristics of water bodies, and deriving statistical 

predictions of water quality at the macrofauna locations and time of sampling. 

We used generalized additive models with Gaussian errors, where the (log of the) 

measured concentrations of each compound are modelled as a function of for ex-

ample temporal (daily and yearly splines), spatial (nonlinear x- and y-coordinates, 

as well as a random effect for catchment area; see equation 5 in main text).

An important aspect in the measurements of physical/chemical properties of the 

water, are the detection limits. Detection limits prohibit straightforward model-

ling, as they pose a left-truncated variable problem (e.g. below a given detection 

limit are essentially). Data that are above the limit provide robust information, 

while water-concentrations below the limit are left-censored: any positive value 

below detection limit is theoretically possible, but is essentially unobserved. 

Detection limits have been lowered by improved analytics over time, in all WAs 

and for most substances measured regularly. Ignoring the changing detection 

limits over time likely results in biased trends in space and time of the measured 

substances/parameters. Therefore, we used GAMs with a Tobit error (distribu-

tion), followed by spatio-temporal interpolation of model residuals to arrive at 

predictions for the macrofauna samples. Tobit regression (Tobin 1958) allows to 

deal with the problem of (variable) detection limits in a straightforward way, and 

recent developments (Fang 2017) have allowed to include this type of error distri-

butions within the framework of generalized additive models (Wood 2017). Below, 

we explain how we interpolated residuals of the tobit-GAMs.

Let z(x, y, t) be the vector of observation of a given compound, indexed by space 

and time. Let also µ(x, y, t) = l(θ) be the corresponding vector of mean-predictions 

from equation 5, and let µ′(x′, y′, t′) be the mean-fitted values at new locations 

(z′(x′, y′, t′)). To derive at full predictions (means + interpolated residuals) at new 

locations, we make use of predicted values µ′ as well as model residuals r = z − µ 

(indexation dropped for simplicity) using

(S.4)

where C the covariance matrix between measured concentrations C = Cov(z, z) and 

C′ the expected covariance matrix between measurement locations and prediction 

locations C′= Cov(z, z′). Note that model residuals in the presence of censoring are 

not obvious for observations below detection limits, and as such we assume for 

the sake of explanation no censoring for now, but deal with this below.

APPENDIX B: 
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OF CHEMICAL WATER PROPERTIES

have been lowered by improved analytics over time, in all WAs and for most substances measured

regularly. Ignoring the changing detection limits over time likely results in biased trends in space

and time of the measured substances/parameters. Therefore, we used GAMs with a Tobit error

(distribution), followed by spatio-temporal interpolation of model residuals to arrive at predictions for

the macrofauna samples. Tobit regression (Tobin, 1958) allows to deal with the problem of (variable)

detection limits in a straightforward way, and recent developments (Fang, 2017) have allowed to

include this type of error distributions within the framework of generalized additive models (Wood,

2017). Below, we explain how we interpolated residuals of the tobit-GAMs.

Let z(x, y, t) be the vector of observation of a given compound, indexed by space and time. Let also

µ(x, y, t) = l(θ) be the corresponding vector of mean-predictions from equation 5, and let µ′(x′, y′, t′)

be the mean-fitted values at new locations (z′(x′, y′, t′)). To derive at full predictions (means +

interpolated residuals) at new locations, we make use of predicted values µ′ as well as model residuals

r = z− µ (indexation dropped for simplicity) using

ẑ′ = µ+C′C−1r (S.4)

where C the covariance matrix between measured concentrations C = Cov(z, z) and C′ the expected

covariance matrix between measurement locations and prediction locations C′ = Cov(z, z′). Note

that model residuals in the presence of censoring are not obvious for observations below detection

limits, and as such we assume for the sake of explanation no censoring for now, but deal with this

below.

Covariance matrices were specified by low-rank parametric covariance models, so that they can

be represented as simple functions of distance in space d and time u, i.e. Cov(zi, zj) = Cov(dij, uij),

for an arbitrary pair (i and j) of observations. We assumed a separable covariance structure in space
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Covariance matrices were specified by low-rank parametric covariance models, 

so that they can be represented as simple functions of distance in space d and 

time u, i.e. Cov(z
i
, z

j
) = Cov(d

ij
, u

ij
), for an arbitrary pair (i and j) of observations. We 

assumed a separable covariance structure in space and time (Pebesma and Heuve-

link 2016). so that the full spatio-temporal covariance structure can be represent-

ed as a product of separate space- and time-covariance structures.

(S.5)

where σ2 the estimated residual variance of the tobit-models, and γ(d, u) the 

semivariance, which in turn depends on the semivariances in space (γ
s
(d)) and 

time (γ
t
(u)):

(S.6)

(Pebesma and Heuvelink 2016). For each substance/parameter, two semvariance 

models were fitted: one for time (γ
t
, using only within monitoring-location residu-

als), and one for space (γ
s
, using only residuals of measurements within taken the 

same month at different locations). For each of the two components (spatial and 

temporal), two alternate semivariance functions were considered for modelling 

semivariance, the exponential:

(S.7)

 

and the spherical

 



(S.8)

 

, from which we selected the best fitting as judged by RMSE, for each substance 

and for each of the spatial and temporal dimensions. For an overview of estimat-

ed parameters see Table S.3.

Turning to the point of censoring, residuals of concentrations below detection 

limit are unobserved, just as the actual values of the substance are. Here, we used 

the expectations of the residuals for below-detection measurements, and the 

calculated residuals for non-censored values:



(S.9)

 

where s
i
 denotes a binary variable indexing censoring (s

i
 = 1) or not (s

i
 = 0), and the 

expected residual is given by

 

	 (S.10)
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below-detection measurements, and the calculated residuals for non-censored values:
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


zi − µi if si = 0

E[zi|si = 0]− µi si = 1

(S.9)

where si denotes a binary variable indexing censoring (si = 1) or not (si = 0), and the expected

residual is given by

E[zi|si = 0] =
1

p

∫ d

−∞
(z×g(z))dz (S.10)
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 w(d, σ, γ) = 1. Parameter σ can be inter-

preted as the average distance to the measurement point over which the weight-

ed covariate values are summed (see Figure S4a). Parameter γ defines the shape 

of the declining function. For γ = 1, the shape is a exponential function, for γ = 2 

a half-gaussian, and further with γ → ∞ result in a uniform distribution (Figure 

S4b).

APPENDIX C: 
SCALE-DEPENDENT ANALYSIS
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SUPPLEMENTARY 
TABLES

TABLE S.1

Taxonomic groups used in classifying insect macrofauna by the Dutch Water Authorities. Of 

some groups only larval stages are found when sampling water bodies.

Code Taxonomic group Dutch names English names

IDCHI Insecta/Diptera - Chironomidae dansmuggen nonbiting midges

IDSIM Insecta/Diptera - Simuliidae kriebelmuggen black flies

IDREM Insecta/Diptera - remaining overige vliegen remaining flies

INCOL Insecta - Coleoptera kevers beetles

INEPH Insecta - Ephemeroptera haften mayflies

INHET Insecta - Heteroptera wantsen true/typical bugs

INLEP Insecta - Lepidoptera motten moths

INODO Insecta - Odonata libellen dragonflies/damselflies

INTRI Insecta - Trichoptera schietmotten/kokerjuffers caddisflies

INREM Insecta - remaining overige insecten remaining insects
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TABLE S.2

Categorization of water types as used in this study in relation to the original watercatego-

rization of the Water Framework Directive (WFD) as well as the Dutch Topographic map 

(TOP10NL). Numbers denote number of locations.
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Original Source Ditch Slow Fast Canals Ponds Small Large Brackish Ditch Waterway Waterway River Small
variable running running shallow lakes water non-WFD 3-6m 6-12m non-WFD lakes

water water lakes non-WFD non-WFD non-WFD non-WFD
M01 Water 136
M02 framework 2
M03 directive 161
M06 74
M07 4
M08 22
M10 28
M11 25
M12 57
M13 18
M14 3
M20 14
M25 9
M26 8
M30 32
M31 7
R01 3
R02 10
R03 29
R04 229
R05 270
R06 77
R07 1
R08 3
R11 4
R13 26
R14 15
R15 5
R17 50
R18 15
Ditch Top 10 8
Waterway <3m 115
Waterway 3-6m 58
Waterway 6-12m 128
Waterway 12-50m 45
Waterway >50m 2
Small lake 14
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TABLE S.3

Estimates of spatial and temporal semivariance parameters for each substance/variable, 

and per dimension of interpolation.

Table S.3: Estimates of spatial and temporal semivariance parameters for each substance/variable,
and per dimension of interpolation.

Serial Spatial
Variable model parameter Estimate(se) model parameter Estimate(se)
NH4 Exp nugget 0.38(0.018) Sph nugget 0.943(0.016)

Exp part. sill 0.373(0.016) Sph part. sill 0.068(0.016)
Exp range 41.09(3.517) Sph range 10.817(1.364)

BOD Exp nugget 0.18(0.008) Exp nugget 0.282(0.003)
Exp part. sill 0.134(0.007) Exp part. sill 0.096(0.003)
Exp range 53.909(6.725) Exp range 4.727(0.224)

Cd Exp nugget 0.286(0.014) Sph nugget 0.319(0.016)
Exp part. sill 0.17(0.014) Sph part. sill 0.111(0.016)
Exp range 88.179(25.174) Sph range 18.404(1.904)

Ca Exp nugget 0.006(0.001) Sph nugget 0.108(0.007)
Exp part. sill 0.022(0.001) Sph part. sill 0.011(0.006)
Exp range 47.513(7.059) Sph range 22.997(29.071)

Cl Sph nugget 0.064(0.001) Sph nugget 0.213(0.004)
Sph part. sill 0.051(0.001) Sph part. sill 0.039(0.005)
Sph range 173.752(7.81) Sph range 19.659(4.372)

Chloro. alpha Exp nugget 0.417(0.07) Sph nugget 1.245(0.014)
Exp part. sill 0.846(0.067) Sph part. sill 0.229(0.116)
Exp range 38.607(6.544) Sph range 37.344(25.581)

Cr Exp nugget 0.218(0.021) Sph nugget 0.239(0.016)
Exp part. sill 0.131(0.018) Sph part. sill 0.078(0.016)
Exp range 52.933(17.081) Sph range 14.568(1.718)

Combustion Exp nugget 0.005(0.002) Exp nugget 0.002(0.002)
Exp part. sill 0.001(0.002) Exp part. sill 0.004(0.002)
Exp range 1.024(5.861) Exp range 2.092(2.004)

PO4 Exp nugget 0.237(0.016) Sph nugget 0.845(0.01)
Exp part. sill 0.382(0.015) Sph part. sill 0.068(0.008)
Exp range 58.184(6.256) Sph range 22.624(5.724)

Sum P Sph nugget 0.161(0.003) Sph nugget 0.399(0.005)
Sph part. sill 0.127(0.003) Sph part. sill 0.055(0.043)
Sph range 160.503(6.582) Sph range 39.031(40.267)

Industrial Sph nugget 0.002(0.001) Exp nugget 0.006(0)
Sph part. sill 0.001(0.001) Exp part. sill 0.002(0.001)
Sph range 3.13(5.208) Exp range 10.127(10.965)

Cu Exp nugget 0.19(0.008) Sph nugget 0.249(0.006)
Exp part. sill 0.098(0.007) Sph part. sill 0.055(0.006)
Exp range 70.375(15.339) Sph range 20.648(2.87)

Pb Sph nugget 0.431(0.016) Sph nugget 0.421(0.014)
Sph part. sill 0.105(0.02) Sph part. sill 0.111(0.013)
Sph range 226.584(81.492) Sph range 19.741(2.063)

Mg Exp nugget 0.007(0.001) Exp nugget 0.057(0.007)
Exp part. sill 0.014(0.001) Exp part. sill 0.003(0.007)
Exp range 57.394(9.104) Exp range 2.292(6.215)

Na Sph nugget 0.022(0.002) Sph nugget 0.05(0.042)
Sph part. sill 0.042(0.002) Sph part. sill 0.059(0.042)
Sph range 152.756(10.061) Sph range 0.855(0.702)

Ni Exp nugget 0.034(0.01) Sph nugget 0.159(0.011)
Exp part. sill 0.118(0.01) Sph part. sill 0.032(0.011)
Exp range 30.038(5.341) Sph range 14.411(2.842)

Suspended matter Exp nugget 0.276(0.011) Sph nugget 0.466(0.008)
Exp part. sill 0.251(0.01) Sph part. sill 0.105(0.007)
Exp range 62.38(6.909) Sph range 21.297(2.159)

Pesticide Sph nugget 0.004(0) Sph nugget 0(0.013)
Sph part. sill 0(0.001) Sph part. sill 0.008(0.013)
Sph range 3.877(12.422) Sph range 0.791(1.289)

NO2+NO3 Exp nugget 0.005(0.005) Sph nugget 1.179(0.366)
Exp part. sill 0.894(0.022) Sph part. sill 0.347(0.366)
Exp range 29.867(2.583) Sph range 2.71(1.399)

Sum N Exp nugget 0.04(0.006) Sph nugget 0.248(0.003)
Exp part. sill 0.143(0.005) Sph part. sill 0.025(0.003)
Exp range 49.578(5.073) Sph range 18.285(1.983)

Water temperature Exp nugget 1.555(0.147) Exp nugget 1.184(0.041)
Exp part. sill 1.038(0.134) Exp part. sill 1.05(0.037)
Exp range 55.063(18.327) Exp range 4.786(0.314)

HCO3 Sph nugget 0.019(0.002) Sph nugget 0.176(0.014)
Sph part. sill 0.034(0.002) Sph part. sill 0.047(0.014)
Sph range 143.066(13.151) Sph range 17.534(5.234)

Zn Exp nugget 0.144(0.013) Sph nugget 0.332(0.012)
Exp part. sill 0.211(0.012) Sph part. sill 0.04(0.012)
Exp range 59.648(9.746) Sph range 16.31(3.424)

pH Sph nugget 0.06(0.003) Sph nugget 0.131(0.003)
Sph part. sill 0.037(0.003) Sph part. sill 0.027(0.003)
Sph range 102.509(9.997) Sph range 24.402(5.31)

O Exp nugget 0.037(0.004) Exp nugget 0.098(0.011)
Exp part. sill 0.055(0.003) Exp part. sill 0.053(0.01)
Exp range 30.254(3.578) Exp range 1.171(0.258)
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TABLE S.4

Estimated scale parameters for a range of land use categories used in weighting land cover 

in taxonomic group models. For each group and parameter, the fitted kernel (γ =1: expo-

nential, γ = 2: gaussian) is given, along with estimated scale (or radius) parameter σ (in 

meters), and the sign of the effect of the weighted covariate on the response.
Table S.4: Estimated scale parameters for a range of land use categories used in weighting land cover
in taxonomic group models. For each group and parameter, the fitted kernel (γ =1: exponential,γ =
2: gaussian) is given, along with estimated scale (or radius) parameter σ (in meters), and the sign of
the effect of the weighted covariate on the response.

Group Variable γ σ Effect sign
INODO Buildings 1 800 -1
INODO Greenhouses 2 145 -1
INODO Agricultural land 2 190 -1
INODO Forest 2 763 1
INODO Open wet natural area 1 433 1
INODO Open dry natural area 1 87 1
INODO Crop field 1 800 -1
INODO Grassland 1 800 1
INREM Buildings 1 196 -1
INREM Greenhouses 2 44 -1
INREM Agricultural land 2 230 -1
INREM Forest 1 113 1
INREM Open wet natural area 2 508 1
INREM Open dry natural area 1 800 1
INREM Crop field 1 800 -1
INREM Grassland 2 800 1
INTRI Buildings 1 675 -1
INTRI Greenhouses 1 70 -1
INTRI Agricultural land 1 800 -1
INTRI Forest 1 225 1
INTRI Open wet natural area 2 26 -1
INTRI Open dry natural area 2 142 -1
INTRI Crop field 1 800 -1
INTRI Grassland 2 260 -1
IDCHI Buildings 2 220 1
IDCHI Greenhouses 2 202 -1
IDCHI Agricultural land 2 557 -1
IDCHI Forest 2 22 -1
IDCHI Open wet natural area 2 113 1
IDCHI Open dry natural area 2 252 -1
IDCHI Crop field 1 800 1
IDCHI Grassland 2 800 1
IDREM Buildings 1 800 -1
IDREM Greenhouses 2 219 -1
IDREM Agricultural land 2 67 -1
IDREM Forest 2 510 1
IDREM Open wet natural area 1 60 1
IDREM Open dry natural area 2 46 1
IDREM Crop field 2 294 -1
IDREM Grassland 1 800 1
IDSIM Buildings 1 13 1
IDSIM Greenhouses 2 371 -1
IDSIM Agricultural land 1 800 -1
IDSIM Forest 1 800 -1
IDSIM Open wet natural area 2 135 -1
IDSIM Open dry natural area 2 319 -1
IDSIM Crop field 1 800 -1
IDSIM Grassland 2 234 -1
INCOL Buildings 1 219 -1
INCOL Greenhouses 1 332 -1
INCOL Agricultural land 1 148 1
INCOL Forest 1 800 1
INCOL Open wet natural area 2 585 1
INCOL Open dry natural area 1 17 1
INCOL Crop field 2 107 1
INCOL Grassland 2 399 1
INEPH Buildings 2 47 1
INEPH Greenhouses 1 92 -1
INEPH Agricultural land 2 30 1
INEPH Forest 2 10 -1
INEPH Open wet natural area 2 182 -1
INEPH Open dry natural area 2 164 -1
INEPH Crop field 1 39 -1
INEPH Grassland 2 314 -1
INHET Buildings 1 176 -1
INHET Greenhouses 2 202 -1
INHET Agricultural land 1 800 1
INHET Forest 1 800 1
INHET Open wet natural area 1 217 1
INHET Open dry natural area 1 10 1
INHET Crop field 1 800 1
INHET Grassland 2 169 1
INLEP Buildings 2 216 -1
INLEP Greenhouses 2 126 1
INLEP Agricultural land 1 63 1
INLEP Forest 1 14 -1
INLEP Open wet natural area 2 308 -1
INLEP Open dry natural area 1 162 -1
INLEP Crop field 1 162 -1
INLEP Grassland 2 95 -1
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IDCHI Open wet natural area 2 113 1
IDCHI Open dry natural area 2 252 -1
IDCHI Crop field 1 800 1
IDCHI Grassland 2 800 1
IDREM Buildings 1 800 -1
IDREM Greenhouses 2 219 -1
IDREM Agricultural land 2 67 -1
IDREM Forest 2 510 1
IDREM Open wet natural area 1 60 1
IDREM Open dry natural area 2 46 1
IDREM Crop field 2 294 -1
IDREM Grassland 1 800 1
IDSIM Buildings 1 13 1
IDSIM Greenhouses 2 371 -1
IDSIM Agricultural land 1 800 -1
IDSIM Forest 1 800 -1
IDSIM Open wet natural area 2 135 -1
IDSIM Open dry natural area 2 319 -1
IDSIM Crop field 1 800 -1
IDSIM Grassland 2 234 -1
INCOL Buildings 1 219 -1
INCOL Greenhouses 1 332 -1
INCOL Agricultural land 1 148 1
INCOL Forest 1 800 1
INCOL Open wet natural area 2 585 1
INCOL Open dry natural area 1 17 1
INCOL Crop field 2 107 1
INCOL Grassland 2 399 1
INEPH Buildings 2 47 1
INEPH Greenhouses 1 92 -1
INEPH Agricultural land 2 30 1
INEPH Forest 2 10 -1
INEPH Open wet natural area 2 182 -1
INEPH Open dry natural area 2 164 -1
INEPH Crop field 1 39 -1
INEPH Grassland 2 314 -1
INHET Buildings 1 176 -1
INHET Greenhouses 2 202 -1
INHET Agricultural land 1 800 1
INHET Forest 1 800 1
INHET Open wet natural area 1 217 1
INHET Open dry natural area 1 10 1
INHET Crop field 1 800 1
INHET Grassland 2 169 1
INLEP Buildings 2 216 -1
INLEP Greenhouses 2 126 1
INLEP Agricultural land 1 63 1
INLEP Forest 1 14 -1
INLEP Open wet natural area 2 308 -1
INLEP Open dry natural area 1 162 -1
INLEP Crop field 1 162 -1
INLEP Grassland 2 95 -1
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Table S.4: Estimated scale parameters for a range of land use categories used in weighting land cover
in taxonomic group models. For each group and parameter, the fitted kernel (γ =1: exponential,γ =
2: gaussian) is given, along with estimated scale (or radius) parameter σ (in meters), and the sign of
the effect of the weighted covariate on the response.

Group Variable γ σ Effect sign
INODO Buildings 1 800 -1
INODO Greenhouses 2 145 -1
INODO Agricultural land 2 190 -1
INODO Forest 2 763 1
INODO Open wet natural area 1 433 1
INODO Open dry natural area 1 87 1
INODO Crop field 1 800 -1
INODO Grassland 1 800 1
INREM Buildings 1 196 -1
INREM Greenhouses 2 44 -1
INREM Agricultural land 2 230 -1
INREM Forest 1 113 1
INREM Open wet natural area 2 508 1
INREM Open dry natural area 1 800 1
INREM Crop field 1 800 -1
INREM Grassland 2 800 1
INTRI Buildings 1 675 -1
INTRI Greenhouses 1 70 -1
INTRI Agricultural land 1 800 -1
INTRI Forest 1 225 1
INTRI Open wet natural area 2 26 -1
INTRI Open dry natural area 2 142 -1
INTRI Crop field 1 800 -1
INTRI Grassland 2 260 -1
IDCHI Buildings 2 220 1
IDCHI Greenhouses 2 202 -1
IDCHI Agricultural land 2 557 -1
IDCHI Forest 2 22 -1
IDCHI Open wet natural area 2 113 1
IDCHI Open dry natural area 2 252 -1
IDCHI Crop field 1 800 1
IDCHI Grassland 2 800 1
IDREM Buildings 1 800 -1
IDREM Greenhouses 2 219 -1
IDREM Agricultural land 2 67 -1
IDREM Forest 2 510 1
IDREM Open wet natural area 1 60 1
IDREM Open dry natural area 2 46 1
IDREM Crop field 2 294 -1
IDREM Grassland 1 800 1
IDSIM Buildings 1 13 1
IDSIM Greenhouses 2 371 -1
IDSIM Agricultural land 1 800 -1
IDSIM Forest 1 800 -1
IDSIM Open wet natural area 2 135 -1
IDSIM Open dry natural area 2 319 -1
IDSIM Crop field 1 800 -1
IDSIM Grassland 2 234 -1
INCOL Buildings 1 219 -1
INCOL Greenhouses 1 332 -1
INCOL Agricultural land 1 148 1
INCOL Forest 1 800 1
INCOL Open wet natural area 2 585 1
INCOL Open dry natural area 1 17 1
INCOL Crop field 2 107 1
INCOL Grassland 2 399 1
INEPH Buildings 2 47 1
INEPH Greenhouses 1 92 -1
INEPH Agricultural land 2 30 1
INEPH Forest 2 10 -1
INEPH Open wet natural area 2 182 -1
INEPH Open dry natural area 2 164 -1
INEPH Crop field 1 39 -1
INEPH Grassland 2 314 -1
INHET Buildings 1 176 -1
INHET Greenhouses 2 202 -1
INHET Agricultural land 1 800 1
INHET Forest 1 800 1
INHET Open wet natural area 1 217 1
INHET Open dry natural area 1 10 1
INHET Crop field 1 800 1
INHET Grassland 2 169 1
INLEP Buildings 2 216 -1
INLEP Greenhouses 2 126 1
INLEP Agricultural land 1 63 1
INLEP Forest 1 14 -1
INLEP Open wet natural area 2 308 -1
INLEP Open dry natural area 1 162 -1
INLEP Crop field 1 162 -1
INLEP Grassland 2 95 -1
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TABLE S.5

Coefficients of full models per taxongroup.

Table S.5: Coefficients of full models per taxongroup
Odonata Insects rem. Trichoptera Chironomidae Diptera rem.

Intercept -1.22(0.15) -2.91(0.26) 0.48(0.17) 3.12(0.11) -0.73(0.14)
Ditch 1.14(0.14) 1.11(0.23) 0.11(0.14) 0.4(0.09) 0.94(0.13)

Slow running water 1.14(0.13) 0.44(0.22) 0.34(0.14) 0.37(0.09) 0.74(0.12)
Fast running water -0.32(0.16) -0.2(0.26) 0.52(0.17) 0.54(0.1) 0.84(0.15)

Canals 1.15(0.12) 0.68(0.2) 0.27(0.13) 0.2(0.08) 0.73(0.11)
Ponds 2.25(0.22) -2.35(0.35) -0.52(0.23) -0.28(0.14) 1.23(0.2)

Small shallow lakes 2.2(0.2) 0.46(0.31) 0.06(0.2) 0.35(0.13) 1.41(0.18)
Large lakes 0.37(0.23) -0.27(0.35) -0.98(0.23) 0.32(0.15) -0.49(0.22)

Ditch non-WFD 0.69(0.13) 0.51(0.21) -0.17(0.13) 0.19(0.08) 1.13(0.12)
Waterway 3-6m non-WFD 0.94(0.14) 0.81(0.22) 0.71(0.14) 0.02(0.09) 1.01(0.13)

Waterway 6-12m non-WFD 1.22(0.12) 0.66(0.2) 0.26(0.13) 0.17(0.08) 0.98(0.11)
River non-WFD 0.89(0.14) 0.38(0.23) 0.53(0.14) 0.08(0.09) 0.87(0.13)

Small lakes non-WFD 0.51(0.21) -1.17(0.46) 0.22(0.22) 0.16(0.14) 2.31(0.18)
Prox. sewage plant -0.01(0.02) -0.05(0.04) -0.08(0.03) 0.05(0.02) -0.12(0.03)

Protected 0.04(0.04) 0.03(0.06) 0.13(0.04) -0.18(0.02) -0.17(0.03)
Built-up -0.38(0.15) 0.69(0.24) -0.69(0.16) 0.08(0.07) -0.11(0.12)

Wet-natural 0.1(0.46) 1.98(0.66) -0.22(0.18) 0.93(0.15) 0.91(0.21)
Dry-natural 0.22(0.29) -3.2(0.72) -0.8(0.27) 0.4(0.2) 0.12(0.18)

Forest 0.44(0.17) 3.33(0.21) 0.53(0.15) -0.03(0.05) 0.3(0.13)
Arable -0.23(0.14) -1.2(0.22) -0.62(0.16) -0.04(0.1) -0.26(0.1)

Rem. agric. 0.06(0.09) 1.69(0.18) 0.07(0.13) -0.13(0.07) 0.15(0.06)
Greenhouses -1.31(0.23) -2.85(0.77) -3(0.26) -0.21(0.14) -0.84(0.2)

Clay -0.52(0.17) 0.49(0.23) 0.4(0.15) 0.01(0.1) 0.89(0.12)
Light clay 0.37(0.08) -0.15(0.13) 0.32(0.08) 0.2(0.05) 0.22(0.07)
Light loam 0.69(0.08) -0.02(0.12) 0.4(0.08) 0.3(0.05) 0.63(0.07)

Muddy on sand 0.79(0.12) 0.15(0.19) 0.74(0.13) 0.3(0.08) 0.45(0.11)
Bog 0.59(0.1) 0.62(0.15) 0.68(0.1) 0.13(0.06) 0.3(0.09)

Sand 0.52(0.08) -0.06(0.12) 0.31(0.08) 0.15(0.05) 0.4(0.07)
Heavy clay 0.48(0.1) 0.66(0.15) 0.47(0.1) 0.31(0.06) 0.38(0.09)
Heavy loam 0.52(0.07) 0.21(0.12) 0.51(0.07) 0.29(0.05) 0.38(0.07)

PC1 0.24(0.02) -0.04(0.04) -0.11(0.02) 0.05(0.02) 0.02(0.02)
PC2 0.08(0.02) 0.44(0.03) 0.26(0.02) -0.01(0.01) 0.11(0.02)
PC3 0.05(0.02) 0.07(0.04) -0.04(0.02) 0.1(0.02) -0.03(0.02)
PC4 0.18(0.05) 0.2(0.07) 0.03(0.05) 0.07(0.03) 0.2(0.04)
PC5 0.01(0.04) 0.29(0.06) -0.08(0.04) -0.02(0.02) -0.02(0.03)
PC6 -0.16(0.04) -0.12(0.06) -0.25(0.04) 0.1(0.03) -0.11(0.04)
PC7 -0.01(0.04) 0.15(0.06) 0.2(0.04) 0.02(0.03) -0.03(0.04)
PC8 0.07(0.05) 0.18(0.07) -0.15(0.05) 0.12(0.03) 0.17(0.04)
PC9 0.07(0.03) 0.13(0.04) -0.08(0.03) 0.05(0.02) 0.06(0.02)

PC10 0(0.03) -0.06(0.05) 0.08(0.03) -0.01(0.02) 0.06(0.03)
PC11 -0.1(0.03) -0.08(0.05) -0.18(0.03) 0.07(0.02) -0.01(0.03)
PC12 -0.14(0.03) 0.09(0.05) 0.03(0.03) 0.07(0.02) 0.03(0.03)
PC13 0(0.02) -0.12(0.03) -0.05(0.02) 0.04(0.01) 0.01(0.02)
PC14 0(0.04) 0.15(0.06) 0.16(0.04) -0.11(0.03) 0.11(0.04)
PC15 -0.16(0.03) 0.23(0.05) -0.27(0.03) 0.02(0.02) -0.05(0.03)
PC16 -0.18(0.04) -0.06(0.05) 0.08(0.04) -0.07(0.02) 0.09(0.03)
PC17 0.06(0.04) 0.2(0.06) 0.11(0.04) -0.06(0.03) 0.11(0.04)
PC18 -0.08(0.03) -0.05(0.05) -0.19(0.03) -0.01(0.02) 0(0.03)
PC19 -0.02(0.03) 0.05(0.04) 0.09(0.03) -0.04(0.02) -0.04(0.03)
PC20 0.04(0.04) -0.07(0.06) -0.09(0.04) 0.02(0.03) -0.22(0.03)
PC21 -0.11(0.04) -0.05(0.05) 0.02(0.04) -0.15(0.02) -0.21(0.03)
PC22 0.05(0.04) -0.23(0.06) -0.04(0.04) -0.04(0.02) -0.01(0.03)
PC23 -0.2(0.04) -0.12(0.06) -0.34(0.04) 0.1(0.03) -0.05(0.04)
PC24 0.16(0.04) -0.06(0.06) 0.23(0.04) 0.02(0.02) -0.07(0.03)
PC25 0.08(0.05) -0.15(0.07) -0.04(0.05) -0.03(0.03) -0.14(0.04)
PC26 0.05(0.04) -0.28(0.07) 0.03(0.04) -0.03(0.03) -0.06(0.04)
PC27 0.16(0.05) 0.2(0.08) 0.08(0.05) 0.04(0.03) -0.07(0.04)
PC28 -0.06(0.05) 0.4(0.07) 0.5(0.05) -0.15(0.03) 0.22(0.04)
PC29 0.16(0.05) -0.07(0.07) -0.03(0.05) -0.02(0.03) -0.26(0.04)
PC30 0.04(0.06) 0.2(0.09) -0.21(0.06) 0.01(0.04) -0.31(0.05)
PC31 0.48(0.06) -0.42(0.09) 0.23(0.06) -0.11(0.04) 0.16(0.05)
PC32 0.15(0.06) -0.35(0.08) -0.15(0.06) 0.02(0.04) -0.24(0.05)
PC33 -0.02(0.06) -0.15(0.09) -0.12(0.06) -0.04(0.04) 0.32(0.05)
PC34 -0.08(0.06) -0.42(0.09) -0.15(0.06) -0.03(0.04) 0.12(0.05)
PC35 -0.07(0.07) 0.02(0.1) -0.16(0.07) -0.02(0.04) 0.13(0.06)
PC36 0.1(0.08) -0.12(0.12) -0.4(0.08) -0.17(0.05) -0.32(0.07)
PC37 0.47(0.1) -0.22(0.15) 0.1(0.1) 0.25(0.06) -0.18(0.09)
PC38 -0.16(0.12) -0.25(0.18) 0.05(0.12) 0.01(0.08) -0.17(0.1)
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Table S.5: Continued
Simuliidae Coleoptera Ephemeroptera Heteroptera Lepidoptera

Intercept -90.94(3474765.26) -0.36(0.13) 0.26(0.16) 0.88(0.14) -6.44(0.36)
Ditch 86.16(3474765.26) 1.09(0.11) 1.41(0.15) 0.95(0.12) 2.4(0.34)

Slow running water 86.3(3474765.26) 0.9(0.11) 1.16(0.15) 0.61(0.12) 2.18(0.34)
Fast running water 87.19(3474765.26) 1.01(0.13) 1.25(0.18) -0.24(0.15) 0.25(0.46)

Canals 83.74(3474765.26) 0.53(0.09) 0.97(0.13) 0.5(0.1) 2.02(0.32)
Ponds 78.11(3474765.26) 0.36(0.17) 1.34(0.25) 1.24(0.2) 3.08(0.48)

Small shallow lakes -8(6370069.75) 0.98(0.15) 1.44(0.22) 1.07(0.18) 2.44(0.42)
Large lakes -2.15(8268554.23) -1.68(0.2) -0.64(0.25) -0.86(0.21) 1(0.5)

Ditch non-WFD 88.49(3474765.26) 0.99(0.1) 0.69(0.14) 0.35(0.11) 2.05(0.33)
Waterway 3-6m non-WFD 85.01(3474765.26) 0.91(0.11) 1.29(0.15) 0.43(0.12) 2.35(0.34)

Waterway 6-12m non-WFD 86.36(3474765.26) 0.72(0.1) 1.33(0.14) 0.45(0.11) 2.12(0.32)
River non-WFD -2.47(4972379.15) 0.29(0.11) 1.13(0.15) 0.03(0.12) 1.82(0.34)

Small lakes non-WFD -3.07(7916832.49) -0.15(0.17) 1.23(0.23) 0.68(0.19) -0.49(0.61)
Prox. sewage plant 0.51(0.08) -0.01(0.02) -0.04(0.03) -0.02(0.02) -0.06(0.05)

Protected 0.85(0.11) -0.08(0.03) 0.07(0.04) -0.07(0.03) -0.05(0.07)
Built-up 1.96(0.31) -0.4(0.11) -0.03(0.1) -0.52(0.12) -0.12(0.24)

Wet-natural 3.06(0.62) 1.73(0.35) -0.39(0.3) 1.37(0.35) 0.4(0.67)
Dry-natural -0.25(1.29) 0.73(0.15) -1.88(0.3) 0.5(0.16) -2.41(0.79)

Forest 0.75(0.38) -0.08(0.14) -0.73(0.08) -0.86(0.16) 0.02(0.18)
Arable -0.81(0.52) 0.15(0.08) -0.12(0.11) 0.69(0.14) -0.29(0.23)

Rem. agric. -0.92(0.33) 0.5(0.08) -0.25(0.08) -0.09(0.11) 0.88(0.2)
Greenhouses -6.55(3.24) -1.02(0.21) -4.12(0.28) -1.94(0.19) 0.81(0.41)

Clay -0.41(0.3) 0.73(0.11) 0.48(0.16) 0.08(0.14) 0.3(0.55)
Light clay 0.15(0.48) 0.57(0.06) 0.53(0.09) 0.53(0.07) 0.7(0.15)
Light loam -0.35(0.23) 0.52(0.06) 0.63(0.08) 0.57(0.07) 0.98(0.16)

Muddy on sand -0.06(0.31) 0.62(0.1) 1.05(0.14) 0.71(0.11) 0.52(0.27)
Bog -0.5(0.29) 0.74(0.08) 0.42(0.1) 0.39(0.09) 1.14(0.19)

Sand 0.21(0.21) 0.59(0.06) 0.65(0.08) 0.42(0.07) 0.63(0.16)
Heavy clay -0.89(0.87) 0.46(0.08) 0.44(0.1) 0.55(0.09) 0.85(0.17)
Heavy loam -0.23(0.26) 0.57(0.06) 0.7(0.08) 0.39(0.07) 0.6(0.15)

PC1 -0.18(0.07) 0.07(0.02) 0.13(0.03) 0.15(0.02) 0.2(0.05)
PC2 -0.24(0.05) 0.21(0.02) 0.06(0.02) -0.03(0.02) 0.15(0.04)
PC3 -0.15(0.06) 0.06(0.02) -0.05(0.03) -0.01(0.02) -0.04(0.04)
PC4 -0.37(0.12) 0.02(0.04) 0.31(0.05) 0.03(0.04) 0.21(0.09)
PC5 0.22(0.1) -0.08(0.03) 0.18(0.04) -0.01(0.03) 0.13(0.07)
PC6 -0.27(0.1) 0.08(0.03) -0.45(0.05) 0.14(0.04) -0.18(0.07)
PC7 0.25(0.1) -0.11(0.03) 0.27(0.04) -0.05(0.04) -0.01(0.08)
PC8 -0.33(0.11) -0.03(0.03) 0.22(0.05) 0.03(0.04) 0.29(0.08)
PC9 -0.55(0.07) 0.05(0.02) 0.14(0.03) 0.03(0.02) 0.25(0.05)

PC10 -0.07(0.08) 0.14(0.02) -0.11(0.03) 0.04(0.03) 0.08(0.06)
PC11 -0.08(0.09) 0.01(0.03) -0.09(0.04) -0.06(0.03) -0.22(0.06)
PC12 -0.31(0.08) 0.05(0.03) -0.21(0.04) -0.15(0.03) 0.12(0.07)
PC13 -0.12(0.05) -0.02(0.02) 0.07(0.02) 0.03(0.02) -0.03(0.04)
PC14 -0.06(0.12) 0.23(0.03) -0.04(0.05) -0.17(0.04) 0.18(0.08)
PC15 -0.18(0.09) 0(0.03) -0.13(0.04) 0.14(0.03) -0.05(0.06)
PC16 0.07(0.09) 0.02(0.03) 0(0.04) -0.24(0.03) -0.19(0.07)
PC17 0.44(0.11) -0.01(0.03) 0.23(0.05) -0.11(0.04) -0.12(0.08)
PC18 -0.34(0.08) -0.01(0.03) 0.07(0.04) -0.12(0.03) -0.06(0.07)
PC19 -0.15(0.08) 0.02(0.02) 0.05(0.03) 0.13(0.03) 0.18(0.05)
PC20 0.38(0.1) -0.17(0.03) -0.16(0.04) -0.04(0.04) -0.2(0.08)
PC21 0.39(0.09) -0.2(0.03) -0.33(0.04) -0.01(0.03) -0.22(0.07)
PC22 -0.01(0.1) 0.12(0.03) 0.01(0.04) 0.1(0.03) -0.05(0.07)
PC23 -0.21(0.1) -0.01(0.03) -0.3(0.05) 0.02(0.04) -0.06(0.08)
PC24 0.6(0.1) -0.21(0.03) 0.18(0.04) 0.13(0.03) 0.12(0.07)
PC25 0.02(0.12) 0.11(0.04) -0.26(0.05) 0.11(0.04) -0.04(0.09)
PC26 -0.04(0.14) -0.05(0.03) 0.03(0.05) 0.15(0.04) 0.03(0.07)
PC27 -0.24(0.12) -0.12(0.04) 0.35(0.06) 0.24(0.04) 0.12(0.09)
PC28 -0.64(0.12) 0.16(0.04) 0.22(0.05) -0.26(0.04) 0.26(0.1)
PC29 0.35(0.13) -0.03(0.04) -0.34(0.05) 0.22(0.04) -0.34(0.1)
PC30 0.01(0.15) -0.18(0.04) -0.33(0.06) 0(0.05) -0.15(0.11)
PC31 -0.14(0.14) -0.01(0.05) 0.07(0.07) 0.46(0.05) 0.3(0.13)
PC32 0.06(0.15) -0.17(0.04) -0.16(0.06) 0.06(0.05) -0.09(0.11)
PC33 0.43(0.15) 0.15(0.05) -0.23(0.06) 0.05(0.05) -0.41(0.12)
PC34 0.3(0.15) -0.1(0.05) 0.07(0.07) -0.05(0.05) 0.08(0.12)
PC35 0.12(0.17) -0.06(0.05) 0.29(0.07) -0.07(0.06) 0.08(0.13)
PC36 0.53(0.19) -0.12(0.06) -0.38(0.09) 0.2(0.07) -0.37(0.16)
PC37 -0.05(0.24) -0.09(0.08) 0.53(0.11) 0.16(0.09) -0.06(0.19)
PC38 0.54(0.29) 0.14(0.09) 0.08(0.13) -0.1(0.1) -0.24(0.23)
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SUPPLEMENTARY 
FIGURES

FIGURE S1

Taxonomic identification depth of sampled individuals per year 

pooled over the eight Water Authorities. The four taxonomic levels 

that occurred most often are, from bottom to top: species, ’species 

combi’, genus, and family. Most individuals (±65%) are identified to 

species level or below, followed by genus (17%) and family level (7%).
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FIGURE S2

Weather decomposition for temperature (a:c), precipi-

tation (d:f) and evapotranspiration (g:i), into a mean 

spatial, a mean annual, and a mean seasonal trend.
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Figure S2: Weather decomposition for temperature (a:c), precipitation (d:f) and evapotranspiration
(g:i), into a mean spatial, a mean annual, and a mean seasonal trend.

105



76 

FIGURE S3

Semivariance plots of residual spatial variation in temperature (a), precipitation (b) and 

evapotranspiration (c).
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FIGURE S4

Example of weighting functions used in measuring land use covariates at certain distance 

form monitoring location. a: different values of scale (σ) while keeping γ = 2 and C = 1, and 

b: different values of shape (γ) while keeping σ = 200 and C = 1, in equation S.12.
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FIGURE S5

Principal component analysis of Explanatory covariates.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0
.8

−0
.4

0.
0

0.
2

Axis−1

temperature
temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week evap. month

temp. previous summ.prec. previous summ.

NH4 BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter
Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn
pH

O

−0.4 −0.2 0.0 0.2 0.4

−0
.6

−0
.2

0.
2

0.
4

0.
6

Axis−3

Ax
is

−4

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. weekprec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

0.
6

Axis−5

Ax
is

−6

temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspirationevap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

Combustion

PO4Sum P

Industrial

Cu

Pb

Mg
Na Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−7

Ax
is

−8 temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion PO4
Sum PIndustrial
Cu Pb

Mg
Na

Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature
HCO3

Zn

pH

O

−0.4 −0.2 0.0 0.2 0.4 0.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Axis−9

temperaturetemp. week
temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4
BOD

Cd Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

MgNa
Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 0.0 0.2 0.4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Axis−11

Ax
is

−1
2

temperature
temp. week

temp. monthGDD

Frost days

precipitation prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial
Cu

Pb

Mg
Na

Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.3

−0
.1

0.
1

0.
3

Axis−13

Ax
is

−1
4

temperature
temp. week

temp. month

GDDFrost days

precipitation

prec. week

prec. month

evapotranspiration evap. week

evap. month
temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

ClChloro. alpha

Cr

Combustion PO4Sum P

Industrial
Cu

Pb

Mg

Na

NiSuspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

ZnpH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−15

Ax
is

−1
6

temperaturetemp. weektemp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na
Ni

Suspended matter

PesticideNO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−17

temperature
temp. weektemp. monthGDD

Frost daysprecipitation

prec. week

prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD
Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4Sum P

Industrial

Cu

PbMgNa

Ni

Suspended matterPesticide

NO2+NO3Sum NWater temperature
HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−19

Ax
is

−2
0

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion
PO4

Sum P

Industrial

Cu

Pb

Mg

Na Ni

Suspended matter

Pesticide

NO2+NO3

Sum N
Water temperature

HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Axis−21

Ax
is

−2
2

temperature

temp. weektemp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

CombustionPO4
Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.1 0.0 0.1 0.2

−0
.1

0.
0

0.
1

0.
2

Axis−23

Ax
is

−2
4

temperature

temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4
Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3

Zn
pH

O

−0.3 −0.2 −0.1 0.0 0.1

−0
.3

−0
.1

0.
0

0.
1

0.
2

Axis−25

temperature
temp. week

temp. monthGDD

Frost days

precipitation
prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.prec. previous summ.NH4

BOD

Cd

Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matterPesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.1

0.
0

0.
1

0.
2

Axis−27

Ax
is

−2
8 temperature

temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.prec. previous summ.

NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

CombustionPO4Sum P

Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.15 −0.05 0.05 0.15

−0
.1

5
−0

.0
5

0.
05

0.
15

Axis−29

Ax
is

−3
0 temperature

temp. weektemp. month

GDD

Frost days
precipitation
prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.prec. previous summ.
NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu
Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3 Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.2

−0
.1

0.
0

0.
1

Axis−31

Ax
is

−3
2 temperature

temp. week
temp. monthGDD

Frost daysprecipitation
prec. week

prec. monthevapotranspiration
evap. weekevap. month

temp. previous summ.prec. previous summ.
NH4

BOD Cd

Ca

ClChloro. alpha Cr

Combustion
PO4

Sum P
Industrial Cu

Pb

Mg

Na Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0
.1

5
−0

.0
5

0.
05

0.
15

temperature

temp. week

temp. month

GDD

Frost days
precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD
Cd

Ca

Cl

Chloro. alpha
CrCombustion

PO4

Sum P

Industrial

Cu PbMg

Na

NiSuspended matterPesticideNO2+NO3 Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

10
0.

20

Ax
is

−3
6

temperature

temp. weektemp. month

GDD
Frost daysprecipitation prec. weekprec. monthevapotranspiration

evap. weekevap. monthtemp. previous summ.prec. previous summ.

NH4
BODCd

Ca

Cl
Chloro. alpha
CrCombustion

PO4

Sum P

Industrial
CuPb

Mg

Na

NiSuspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

05
0.

10

Ax
is

−3
8

temperature

temp. week

temp. month

GDD

Frost daysprecipitation

prec. week

prec. monthevapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BODCdCaCl
Chloro. alphaCrCombustionPO4

Sum P IndustrialCuPbMgNa
NiSuspended matterPesticideNO2+NO3Sum N

Water temperature

HCO3ZnpH O

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0
.8

−0
.4

0.
0

0.
2

Axis−1

temperature
temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week evap. month

temp. previous summ.prec. previous summ.

NH4 BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter
Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn
pH

O

−0.4 −0.2 0.0 0.2 0.4

−0
.6

−0
.2

0.
2

0.
4

0.
6

Axis−3

Ax
is

−4

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. weekprec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

0.
6

Axis−5

Ax
is

−6

temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspirationevap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

Combustion

PO4Sum P

Industrial

Cu

Pb

Mg
Na Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−7

Ax
is

−8 temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion PO4
Sum PIndustrial
Cu Pb

Mg
Na

Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature
HCO3

Zn

pH

O

−0.4 −0.2 0.0 0.2 0.4 0.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Axis−9

temperaturetemp. week
temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4
BOD

Cd Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

MgNa
Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 0.0 0.2 0.4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Axis−11

Ax
is

−1
2

temperature
temp. week

temp. monthGDD

Frost days

precipitation prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial
Cu

Pb

Mg
Na

Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.3

−0
.1

0.
1

0.
3

Axis−13

Ax
is

−1
4

temperature
temp. week

temp. month

GDDFrost days

precipitation

prec. week

prec. month

evapotranspiration evap. week

evap. month
temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

ClChloro. alpha

Cr

Combustion PO4Sum P

Industrial
Cu

Pb

Mg

Na

NiSuspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

ZnpH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−15

Ax
is

−1
6

temperaturetemp. weektemp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na
Ni

Suspended matter

PesticideNO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−17

temperature
temp. weektemp. monthGDD

Frost daysprecipitation

prec. week

prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD
Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4Sum P

Industrial

Cu

PbMgNa

Ni

Suspended matterPesticide

NO2+NO3Sum NWater temperature
HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−19

Ax
is

−2
0

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion
PO4

Sum P

Industrial

Cu

Pb

Mg

Na Ni

Suspended matter

Pesticide

NO2+NO3

Sum N
Water temperature

HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Axis−21

Ax
is

−2
2

temperature

temp. weektemp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

CombustionPO4
Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.1 0.0 0.1 0.2

−0
.1

0.
0

0.
1

0.
2

Axis−23

Ax
is

−2
4

temperature

temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4
Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3

Zn
pH

O

−0.3 −0.2 −0.1 0.0 0.1

−0
.3

−0
.1

0.
0

0.
1

0.
2

Axis−25

temperature
temp. week

temp. monthGDD

Frost days

precipitation
prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.prec. previous summ.NH4

BOD

Cd

Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matterPesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.1

0.
0

0.
1

0.
2

Axis−27

Ax
is

−2
8 temperature

temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.prec. previous summ.

NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

CombustionPO4Sum P

Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.15 −0.05 0.05 0.15

−0
.1

5
−0

.0
5

0.
05

0.
15

Axis−29

Ax
is

−3
0 temperature

temp. weektemp. month

GDD

Frost days
precipitation
prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.prec. previous summ.
NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu
Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3 Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.2

−0
.1

0.
0

0.
1

Axis−31

Ax
is

−3
2 temperature

temp. week
temp. monthGDD

Frost daysprecipitation
prec. week

prec. monthevapotranspiration
evap. weekevap. month

temp. previous summ.prec. previous summ.
NH4

BOD Cd

Ca

ClChloro. alpha Cr

Combustion
PO4

Sum P
Industrial Cu

Pb

Mg

Na Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0
.1

5
−0

.0
5

0.
05

0.
15

temperature

temp. week

temp. month

GDD

Frost days
precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD
Cd

Ca

Cl

Chloro. alpha
CrCombustion

PO4

Sum P

Industrial

Cu PbMg

Na

NiSuspended matterPesticideNO2+NO3 Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

10
0.

20

Ax
is

−3
6

temperature

temp. weektemp. month

GDD
Frost daysprecipitation prec. weekprec. monthevapotranspiration

evap. weekevap. monthtemp. previous summ.prec. previous summ.

NH4
BODCd

Ca

Cl
Chloro. alpha
CrCombustion

PO4

Sum P

Industrial
CuPb

Mg

Na

NiSuspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

05
0.

10

Ax
is

−3
8

temperature

temp. week

temp. month

GDD

Frost daysprecipitation

prec. week

prec. monthevapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BODCdCaCl
Chloro. alphaCrCombustionPO4

Sum P IndustrialCuPbMgNa
NiSuspended matterPesticideNO2+NO3Sum N

Water temperature

HCO3ZnpH O



79 78 

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−0
.8

−0
.4

0.
0

0.
2

Axis−1

temperature
temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week evap. month

temp. previous summ.prec. previous summ.

NH4 BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter
Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn
pH

O

−0.4 −0.2 0.0 0.2 0.4

−0
.6

−0
.2

0.
2

0.
4

0.
6

Axis−3

Ax
is

−4

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. weekprec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.4

0.
0

0.
2

0.
4

0.
6

Axis−5

Ax
is

−6

temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspirationevap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

Combustion

PO4Sum P

Industrial

Cu

Pb

Mg
Na Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3
Zn

pH
O

−0.4 −0.2 0.0 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−7

Ax
is

−8 temperaturetemp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion PO4
Sum PIndustrial
Cu Pb

Mg
Na

Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature
HCO3

Zn

pH

O

−0.4 −0.2 0.0 0.2 0.4 0.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Axis−9

temperaturetemp. week
temp. month

GDD

Frost days

precipitation

prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.

prec. previous summ.

NH4
BOD

Cd Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

MgNa
Ni

Suspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 0.0 0.2 0.4

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Axis−11

Ax
is

−1
2

temperature
temp. week

temp. monthGDD

Frost days

precipitation prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial
Cu

Pb

Mg
Na

Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH
O

−0.4 −0.2 0.0 0.2 0.4

−0
.3

−0
.1

0.
1

0.
3

Axis−13

Ax
is

−1
4

temperature
temp. week

temp. month

GDDFrost days

precipitation

prec. week

prec. month

evapotranspiration evap. week

evap. month
temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

ClChloro. alpha

Cr

Combustion PO4Sum P

Industrial
Cu

Pb

Mg

Na

NiSuspended matter

Pesticide

NO2+NO3
Sum N

Water temperature

HCO3

ZnpH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−15

Ax
is

−1
6

temperaturetemp. weektemp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na
Ni

Suspended matter

PesticideNO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1 0.2

−0
.4

−0
.2

0.
0

0.
2

Axis−17

temperature
temp. weektemp. monthGDD

Frost daysprecipitation

prec. week

prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD
Cd
Ca

Cl

Chloro. alpha

Cr

Combustion

PO4Sum P

Industrial

Cu

PbMgNa

Ni

Suspended matterPesticide

NO2+NO3Sum NWater temperature
HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

0.
0

0.
1

0.
2

0.
3

Axis−19

Ax
is

−2
0

temperature

temp. week

temp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspirationevap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion
PO4

Sum P

Industrial

Cu

Pb

Mg

Na Ni

Suspended matter

Pesticide

NO2+NO3

Sum N
Water temperature

HCO3

Zn

pH

O

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Axis−21

Ax
is

−2
2

temperature

temp. weektemp. month

GDD

Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha
Cr

CombustionPO4
Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0.1 0.0 0.1 0.2

−0
.1

0.
0

0.
1

0.
2

Axis−23

Ax
is

−2
4

temperature

temp. week

temp. month

GDD
Frost days

precipitation

prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.

prec. previous summ.

NH4

BOD

Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4
Sum P

Industrial

Cu

Pb
Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3

Zn
pH

O

−0.3 −0.2 −0.1 0.0 0.1

−0
.3

−0
.1

0.
0

0.
1

0.
2

Axis−25

temperature
temp. week

temp. monthGDD

Frost days

precipitation
prec. week

prec. month
evapotranspiration

evap. weekevap. month

temp. previous summ.prec. previous summ.NH4

BOD

Cd

Ca
Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu

Pb

Mg

Na

Ni
Suspended matterPesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.1

0.
0

0.
1

0.
2

Axis−27

Ax
is

−2
8 temperature

temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspirationevap. week
evap. month

temp. previous summ.prec. previous summ.

NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

CombustionPO4Sum P

Industrial

Cu

Pb

Mg

Na

Ni

Suspended matter

Pesticide

NO2+NO3Sum N

Water temperature

HCO3

Zn

pH

O

−0.15 −0.05 0.05 0.15

−0
.1

5
−0

.0
5

0.
05

0.
15

Axis−29

Ax
is

−3
0 temperature

temp. weektemp. month

GDD

Frost days
precipitation
prec. week

prec. month

evapotranspiration

evap. week
evap. month

temp. previous summ.prec. previous summ.
NH4

BOD
Cd

Ca

Cl

Chloro. alpha

Cr

Combustion

PO4

Sum P

Industrial

Cu
Pb

Mg

Na

Ni
Suspended matter

Pesticide

NO2+NO3

Sum N

Water temperatureHCO3 Zn

pH

O

−0.2 −0.1 0.0 0.1

−0
.2

−0
.1

0.
0

0.
1

Axis−31

Ax
is

−3
2 temperature

temp. week
temp. monthGDD

Frost daysprecipitation
prec. week

prec. monthevapotranspiration
evap. weekevap. month

temp. previous summ.prec. previous summ.
NH4

BOD Cd

Ca

ClChloro. alpha Cr

Combustion
PO4

Sum P
Industrial Cu

Pb

Mg

Na Ni

Suspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3

Zn

pH

O

−0
.1

5
−0

.0
5

0.
05

0.
15

temperature

temp. week

temp. month

GDD

Frost days
precipitation

prec. week

prec. month

evapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BOD
Cd

Ca

Cl

Chloro. alpha
CrCombustion

PO4

Sum P

Industrial

Cu PbMg

Na

NiSuspended matterPesticideNO2+NO3 Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

10
0.

20

Ax
is

−3
6

temperature

temp. weektemp. month

GDD
Frost daysprecipitation prec. weekprec. monthevapotranspiration

evap. weekevap. monthtemp. previous summ.prec. previous summ.

NH4
BODCd

Ca

Cl
Chloro. alpha
CrCombustion

PO4

Sum P

Industrial
CuPb

Mg

Na

NiSuspended matterPesticide

NO2+NO3

Sum N

Water temperature

HCO3Zn
pH

O

−0
.1

0
0.

00
0.

05
0.

10

Ax
is

−3
8

temperature

temp. week

temp. month

GDD

Frost daysprecipitation

prec. week

prec. monthevapotranspiration

evap. week

evap. month

temp. previous summ.prec. previous summ.NH4BODCdCaCl
Chloro. alphaCrCombustionPO4

Sum P IndustrialCuPbMgNa
NiSuspended matterPesticideNO2+NO3Sum N

Water temperature

HCO3ZnpH O

FIGURE S5

Continued from previous page.



80 

FIGURE S6

Correlation matrix between 38 explanatory variables 

used in PCA analysis and subsequent modelling. Green 

sub-boxes denote groups of covariates (Weather, Toxicity 

and physical/chemical water-properties).
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FIGURE S7

Total insect-macrofauna abundance (pooled over all taxonomic groups) per WA.
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FIGURE S8

Average insect macrofauna trends for each of the taxonomic groups and each of the WAs.
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FIGURE S9

Trends among ten insect-macrofauna groups for each of the three WA groups. West (W): 

HHD & WHD, South (S): WAM, WD, WPM & WRO, East (E): WRD & WRIJ.
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FIGURE S10

Trends in species richness for each of the Water Authorities (WA) in 1990-2017
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FIGURE S11

Trends in Shannon index of diversity for each of the Water Authorities in 1990-2017
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FIGURE S12

Trends in Simpson’s index of diversity for each of the Water Authorities in 1990-2017

FIGURE S13

Trends in Shannon’s index of evenness for each of the Water Authorities in 1990-2017
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FIGURE S14

Back-transformed covariate effects (z-scores) for each of the ten taxonomic insect groups. 

Black bars indicate significant effects. COD = chemical oxygen demand, BOD = biochemical 

oxygen demand, maxHU = maximum hazard unit, msPAF = multiple-substance Potentially 

Affected Fraction.
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FIGURE S14

Continued from previous page.
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Continued from previous page.
Arable

Greenhouses
rem. agric.

built−up
forest

dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Diptera rem.

−10 −5 0 5

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Simuliidae

−4 0 2 4 6 8

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Coleoptera

−8 −4 0 2 4 6

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Ephemeroptera

−10 0 5 10 15

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Heteroptera

−5 0 5

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Lepidoptera

−4 0 2 4

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Diptera rem.

−10 −5 0 5

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Simuliidae

−4 0 2 4 6 8

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Coleoptera

−8 −4 0 2 4 6

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Ephemeroptera

−10 0 5 10 15

Weather

Toxicity

Psysical/Chemical properties

Land use



89 88 

FIGURE S14

Continued from previous page.

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Heteroptera

−5 0 5

Weather

Toxicity

Psysical/Chemical properties

Land use

Arable
Greenhouses

rem. agric.
built−up

forest
dry−natural
wet−natural

Protected
prox. sewage plant

NH4
BOD

Cd
Ca
Cl

Chloro. alpha
Cr

PO4
Sum P

Cu
Pb
Mg
Na
Ni

Suspended matter
NO2+NO3

Sum N
Water temperature

HCO3
Zn
pH
O

Combustion
Industrial
Pesticide

temperature
temp. week

temp. month
GDD

Frost days
precipitation

prec. week
prec. month

evapotranspiration
evap. week

evap. month
temp. previous summ.
prec. previous summ.

Lepidoptera

−4 0 2 4

Weather

Toxicity

Psysical/Chemical properties

Land use



90 

ABOUT 
STOWA

90 

Larva of spring stonefly - Nemoura cinerea - beeksteenvlieg
Photo: Bureau Biota
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Plecoptera Nemoura cinerea larvae
Photo:Bureau Biota

STOWA (Acronym for Foundation for Applied Water Research) is the knowledge centre of 

the regional water managers (mostly the Dutch Water Authorities) in the Netherlands. 

Its mission is to develop, collect, distribute and implement applied knowledge, which 

the water managers need in order to adequately carry out the tasks that their work 

supports. This expertise can cover applied technical, scientific, administrative-legal or 

social science fields.

STOWA is a highly demand-driven operation. We carefully take stock of the knowledge 

requirements of the Water Authorities and ensure that these are placed with the 

correct knowledge providers. The initiative for this mainly lies with the users of 

this knowledge, the water managers, but sometimes also with knowledge institutes, 

business and industry. This two-way flow of knowledge promotes modernisation and 

innovation.

Demand-driven operation also means that we are constantly looking for the ‘knowledge 

requirements of tomorrow’ - requirements that we dearly want to put on the agenda 

before they become an issue - in order to ensure that we are optimally prepared for the 

future. 

We ease the burden of the water managers by assuming the tasks of placing the 

invitation to tender and supervising the joint knowledge projects. STOWA ensures 

that water managers remain linked to these projects and also retain ‘ownership’ of 

them. In this way, we make sure that the correct knowledge requirements are met. The 

projects are supervised by committees, which also comprise regional water managers. 

The broad research lines are spread out per field of practice and accounted for by 

special programme committees. The water managers also have representatives on these 

committees.

STOWA is not only a link between the users of knowledge and knowledge providers, but 

also between the regional water managers. The collaboration of the water managers 

within STOWA ensures they are jointly responsible for the programming, that they set 

the course, that several Water Authorities are involved with one and the same project 

and that the results quickly benefit all Water Boards. 

MISSION STATEMENT

STOWA’s fundamental principles are set out in our mission: 

Defining the knowledge needs in the field of water management and developing, 

collecting, making available, sharing, strengthening and implementing the required 

knowledge or arranging for this together with regional water managers.

STOWA

P.O. Box 2180 

3800 CD Amersfoort 

The Netherlands

033 460 32 00   

stowa@stowa.nl   

www.stowa.nl

mailto:stowa%40stowa.nl%20?subject=
http://www.stowa.nl


1 1 PB 1 

  

stowa@stowa.nl  www.stowa.nl
TEL 033 460 32 00  FAX 033 460 32 01
Stationsplein 89  3818 LE Amersfoort
POSTBUS 2180  3800 CD Amersfoort

STICHTING
TOEGEPAST ONDERZOEK WATERBEHEER

LON
G-TERM

 TREN
DS AN

D DRIVERS OF AQUATIC IN
SECTS IN

 TH
E N

ETH
ERLAN

DS

 
2021 39

mailto:stowa%40stowa.nl?subject=
http://www.stowa.nl



